Lectures 08-09: Paper overviews

PPHA 34600 Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

TL;DR:

- 1 Instrumental variables are very powerful
- 2 ...but they require extremely strong assumptions!
- 8 Hashtag no free lunch

An example: Impacts of parental incarceration on kids

Policy issue:

- Millions of Americans are in jail annually
- This likely impacts not only them, but also their families
- What is the impact of family member incarceration?

Approach:

- (We're not actually evaluating a program here)
- We need a shock to incarceration
- $\rightarrow\,$ We don't have randomization, so we use IV
 - Instrument of choice: random assignment to strict/harsh judges
- $\rightarrow\,$ Do we believe this? Hold that thought...

Treatment effects of parental incarceration on kids

How does parental incarceration affect kids (simplified)?

First stage:

```
Parental incarceration<sub>i</sub> = \alpha + \gammaJudge leniency<sub>ii</sub> + \beta X_{ij} + \eta_{ij}
```

where

Parental incarceration_i is equal to 1 if i's parent is jailed and 0 otherwise Judge leniency_{ij} is the strictness of judge j X_{jt} are controls η_{it} is an error term

First stage (graphically)

Treatment effects of parental incarceration on kids

How does parental incarceration affect kids (simplified)?

First stage:

```
Parental incarceration<sub>i</sub> = \alpha + \gammaJudge leniency<sub>ii</sub> + \beta X_{ij} + \eta_{ij}
```

where

Parental incarceration_i is equal to 1 if i's parent is jailed and 0 otherwise Judge leniency_{ij} is the strictness of judge j X_{jt} are controls η_{it} is an error term

Second stage:

$$Y_i = \alpha + \delta$$
parental incarceration_i + $\tau X_{ij} + \eta_i$

where

 Y_i are outcomes for child *i* parental incarceration_{*i*} is the fitted values from the first stage

PPHA 34600

Second stage (OLS)

	Ext	ensive mar	gin (=1)	Intensive margin (IHS)						
	Charged (1)	Convicted (2)	Incarcerated (3)	Charged (4)	Convicted (5)	Incarcerated (6)				
Panel A: Criminal activity before age 25 (OLS with no controls)										
Parent incarcerated (=1)	$\begin{array}{c} 0.024^{***} \\ (0.005) \end{array}$	0.024*** (0.005)	0.015*** (0.004)	$\begin{array}{c} 0.054^{***} \\ (0.011) \end{array}$	0.042*** (0.009)	0.030*** (0.007)				
Index <i>p</i> -value Dependent mean Observations	0.325 83,532	0.247 83,532	0.000 0.124 83,532	$0.568 \\ 83,532$	0.375 83,532	0.000 0.205 83,532				
Panel B: Criminal activity before age 25 (OLS with controls)										
Parent incarcerated (=1)	-0.004 (0.005)	-0.001 (0.005)	-0.001 (0.003)	-0.009 (0.010)	-0.004 (0.008)	0.000 (0.006)				
Index <i>p</i> -value Dependent mean Observations	0.325 83,532	0.247 83,532	0.645 0.124 83,532	$0.568 \\ 83,532$	0.375 83,532	0.645 0.205 83,532				

Table A4: Effect of parental incarceration on child criminal activity, OLS comparison

Second stage (IV)

	Extensive margin (=1)			Intensive margin (IHS)					
	Charged (1)	Convicted (2)	Incarcerated (3)	Charged (4)	Convicted (5)	Incarcerat (6)	ed		
	Panel A.	Criminal	activity before	e age 25					
Parent incarce rated $(=1)$	-0.066^{**} (0.030)	-0.055** (0.027)	-0.049** (0.020)	-0.156^{**} (0.061)	-0.097** (0.045)	-0.076** (0.035)	ł		
Index <i>p</i> -value			0.011			0.013			
Dependent mean	0.325	0.247	0.124	0.568	0.375	0.205			
Observations	83,532	83,532	83,532	83,532	83,532	83,532			
	Panel	B: Juvenil	e criminal ac	tivity					
Parent incarce rated $(=1)$	-0.064*** (0.023)		-0.033*** (0.011)	-0.113*** (0.039)		-0.030** (0.013)			
Index p-value			0.001			0.003			
Dependent mean	0.202		0.050	0.306		0.052			
Observations	64,781		64,781	64,781		64,781			
Panel C: Adult criminal activity									
Parent incarce rated $(=1)$	-0.045 (0.029)	-0.055** (0.027)	-0.033* (0.019)	-0.106^{*} (0.055)	-0.097** (0.045)	-0.055 (0.033)			
Index <i>p</i> -value			0.044			0.039			
PPHA 34600		Program	Evaluation		Papers: Lectu	res 08-09	7		

How does judge leniency affect child outcomes (simplified)?

Reduced form:

$$\mathbf{Y}_i = \alpha + \theta \mathsf{Judge} \mathsf{ leniency}_{ij} + \pi X_{ij} + \eta_i$$

Reduced form

The exclusion restriction is the key to any IV

You should always ask: What is the exclusion restriction in this analysis saying? The exclusion restriction is the key to any IV

You should always ask: What is the exclusion restriction in this analysis saying?

Do we believe this? Why or why not?

Second stage (IV)

	Ext	ensive marg	gin (=1)	Intensive margin (IHS)					
	Charged (1)	Convicted (2)	Incarcerated (3)	Charged (4)	Convicted (5)	Incarcerated (6)			
	Panel A.	Criminal	activity before	e age 25					
Parent incarce rated $(=1)$	-0.066^{**} (0.030)	-0.055** (0.027)	-0.049** (0.020)	-0.156^{**} (0.061)	-0.097** (0.045)	-0.076** (0.035)			
Index <i>p</i> -value			0.011			0.013			
Dependent mean	0.325	0.247	0.124	0.568	0.375	0.205			
Observations	83,532	83,532	83,532	83,532	83,532	83,532			
	Panel	B: Juvenil	e criminal ac	tivity					
Parent incarcerated (=1)	-0.064***		-0.033***	-0.113***		-0.030**			
	(0.023)		(0.011)	(0.039)		(0.013)			
Index p-value			0.001			0.003			
Dependent mean	0.202		0.050	0.306		0.052			
Observations	64,781		64,781	64,781		64,781			
Panel C: Adult criminal activity									
Parent incarcerated (=1)	-0.045	-0.055**	-0.033*	-0.106*	-0.097**	-0.055			
	(0.029)	(0.027)	(0.019)	(0.055)	(0.045)	(0.033)			
Index <i>p</i> -value			0.044			0.039			
PPHA 34600		Program	Evaluation	P	Papers: Lectures 08-09				

TL;DR:

1 Instrumental variables are very powerful

- **2** With the right assumptions...
- **3** ...we can handle OVB and ME (and simultaneity)

An example: Returns to schooling

Policy issue:

- How much is a year of school worth?
- This is really important for deciding how much school to invest in
- What role does measurement error play in our estimates?

Approach:

- (We're not actually evaluating a program here)
- We want to estimate the effect of schooling on wages
- Measurement of years of schooling is poor
- Instrument of choice: sibling $j \neq i$ -reported schooling

Estimating the effects of schooling on wages

The authors will run a (simplified) version of:

```
Wages_i = \tau Schooling_i + \varepsilon_i
```

Where: *Wages*_i is a measure of wages *Schooling*_i is years of schooling for child *i* ε_i is an error term

Estimating the effects of schooling on wages

The authors will run a (simplified) version of:

```
Wages_i = \tau Schooling_i + \varepsilon_i
```

Where:

*Wages*_i is a measure of wages

Schooling_i is years of schooling for child i

 ε_i is an error term

A big concern

- Schooling_i is measured with error
- We are likely to understate the true effect
- **Solution:** Z_i = Schooling as reported by twin_i!

First stage estimates (sort of)

A. Identical Twins										
Variable	Y_1	Y_2	S_1^1	S_{1}^{2}	S_{2}^{2}	S_2^1	$E_{ m F}^1$	$E_{\rm F}^2$	$E^1_{\mathbf{M}}$	E_{M}^{2}
<i>Y</i> ₁	1.000									
<i>Y</i> ₂	0.563	1.000								
S_1^1	0.382	0.168	1.000							
S_{1}^{2}	0.375	0.140	0.920	1.000						
<i>S</i> ² ₂	0.267	0.272	0.658	0.697	1.000					
S_{2}^{1}	0.248	0.247	0.700	0.643	0.877	1.000				
Father's education $(E_{\rm F}^1)$	0.155	0.088	0.345	0.266	0.361	0.416	1.000			
Father's education (E_F^2)	0.159	0.091	0.357	0.278	0.320	0.389	0.857	1.000		
Mother's education (E_{M}^{1})	0.102	0.088	0.348	0.343	0.392	0.410	0.614	0.644	1.000	
Mother's education $(E_{\rm M}^2)$	0.126	0.087	0.316	0.321	0.322	0.337	0.503	0.579	0.837	1.000

2SLS estimates

OLS (i)	GLS (ii)	GLS (iii)	IV ^a (iv)	First difference (v)	First difference by IV (vi)
0.084 (0.014)	0.087 (0.015)	0.088 (0.015)	0.116 (0.030)	0.092 (0.024)	0.167 (0.043)
_		-0.007 (0.015)	-0.037 (0.029)		_
0.088 (0.019)	0.090 (0.023)	0.090 (0.023)	0.088 (0.019)		_
-0.087 (0.023)	-0.089 (0.028)	-0.090 (0.029)	-0.087 (0.024)		_
0.204 (0.063)	0.204 (0.077)	0.206 (0.077)	0.206 (0.064)		
-0.410 (0.127)	-0.417 (0.143)	-0.424 (0.144)	-0.428 (0.128)		. —
298 0.260	298 0.219	298 0.219	298 —	149 0.092	149
	OLS (i) 0.084 (0.014) - 0.088 (0.019) -0.087 (0.023) 0.204 (0.063) -0.410 (0.127) 298 0.260	OLS (i) GLS (ii) 0.084 (0.014) 0.087 (0.015) - - 0.088 (0.019) 0.090 (0.023) -0.087 (0.023) -0.089 (0.028) 0.204 (0.063) 0.0204 (0.077) -0.410 (0.127) -0.417 (0.124) 298 0.260 298 0.219	OLS (i) GLS (ii) GLS (iii) 0.084 (0.014) 0.087 (0.015) 0.088 (0.015) - - -0.007 (0.015) 0.088 (0.019) 0.090 (0.023) 0.090 (0.023) -0.087 (0.023) -0.089 (0.028) -0.090 (0.029) 0.204 (0.063) 0.204 (0.077) 0.024 (0.077) -0.410 (0.143) -0.417 (0.143) -0.424 (0.144) 298 0.260 298 0.219 298 0.219	$\begin{array}{c cccc} OLS \\ (i) \\ (i) \\ (i) \\ (ii) \\ (ii) \\ (ii) \\ (iii) \\ (iiii) \\ (iiii) \\ (iiii) \\ (iiii) \\ (iiii) \\ (iiiii) \\ (iiiii) \\ (iiiii) \\ (iiiiii) \\ (iiiii) \\ (iiiiii) \\ (iiiii) \\ (iiii) \\ (iiii) \\ (iiii) \\ (iiii) \\ (iiiii) \\ (iiii) \\ (i$	$\begin{array}{c cccc} GLS & GLS & GLS & IV^a \\ (i) & (ii) & (iii) & (iii) & (iv) & (v) \\ \hline 0.084 & 0.087 & 0.088 & 0.116 & 0.092 \\ (0.014) & (0.015) & (0.015) & (0.030) & (0.024) \\ \hline - & - & -0.007 & -0.037 \\ (0.015) & (0.023) & (0.023) & (0.019) \\ \hline 0.088 & 0.090 & 0.090 & 0.088 & - \\ (0.019) & (0.023) & (0.023) & (0.019) \\ \hline - & - & 0.089 & -0.090 & -0.087 \\ (0.023) & (0.028) & (0.029) & (0.024) \\ \hline - & 0.087 & -0.089 & -0.090 & -0.087 \\ (0.023) & (0.023) & (0.026) & - \\ (0.063) & (0.077) & (0.064) \\ \hline - & - & 0.417 & -0.424 & -0.428 \\ (0.127) & (0.143) & (0.144) & (0.128) \\ \hline 298 & 298 & 298 & 298 & 298 & 149 \\ 0.260 & 0.219 & 0.219 & - & 0.092 \\ \hline \end{array}$