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From last time: wrapping up DD(D)

We met the DDD estimator:

Yijt = β0 + β1Treati + β2Postt + β3Affectedj + β4(Treati × Postt)

+ β5(Postt × Affectedj) + β6(Treati × Affectedj)

+ τ(Treati × Postt × Affectedj) + εijt
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A tour of research designs

We’ve met several research designs this quarter:

1 Randomized controlled trial

• Eliminates selection bias via randomization

2 Regression adjustment & matching

• Selection on observables

• Strong assumption: We observe everything that might matter

3 Instrumental variables

• Use some (quasi)-random variation to move endogenous treatment

• Strong assumption: Exclusion restriction

4 Panel fixed effects

• Compare units to themselves over time

• Strong assumption: Parallel counterfactual trends
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My favorite selection on unobservables design

Today, we’ll meet the regression discontinuity (RD):

• Basic intuition: Use a (policy-induced) cutoff to compare i and j

→ Look at “barely-treated” units vs. “barely-untreated” units

• Enables us to come close to mimicking random assignment

• Identifying assumptions are transparent

• We can do a lot of this in pictures
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Regression discontinuity design

As usual, we’d like to run:

Yi = α + τDi + εi

→ We will try to mimic random assignment

The regression discontinuity:

• Suppose Di is determined by whether or not Xi lies above a cutoff, c

• We call Xi the “running variable” here

• Idea: Having Xi just above or just below c is as good as random...

• ... And there is a discontinuous change in Di as a result of crossing c

→ We can compare Yi for units with Xi just above c to Yi for units with
Xi just below c

PPHA 34600 Program Evaluation Lecture 14 4 / 23



Regression discontinuity design

As usual, we’d like to run:

Yi = α + τDi + εi

→ We will try to mimic random assignment

The regression discontinuity:

• Suppose Di is determined by whether or not Xi lies above a cutoff, c

• We call Xi the “running variable” here

• Idea: Having Xi just above or just below c is as good as random...

• ... And there is a discontinuous change in Di as a result of crossing c

→ We can compare Yi for units with Xi just above c to Yi for units with
Xi just below c

PPHA 34600 Program Evaluation Lecture 14 4 / 23



Sharp regression discontinuity

In the most straightforward, or “sharp” RD design:

• Pr(Di = 1|Xi ≥ c) = 1 and Pr(Di = 1|Xi < c) = 0

• Pr(Di = 1|Xi ≥ c)− Pr(Di = 1|Xi < c) = 1

• Nobody with Xi < c gets treated

• Everybody with Xi ≥ c gets treated

• The probability of treatment jumps from 0 to 100% as Xi crosses c

• Di = 1(Xi ≥ c)

→ This is equivalent to perfect compliance in the RCT
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Sharp regression discontinuity: Treatment assignment
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Sharp regression discontinuity: Estimation

To get τ , compare units with Di = 0 and Di = 1 exactly at the cutoff:

τ̂SRD = E [Yi (1)− Yi (0)|Xi = c]

• The estimator is defined exactly at the cutoff

• But we will never observe Yi (Di = 1,Xi < c) or Yi (Di = 0,Xi ≥ c)

→ Even in RD land, we can’t escape the FPCI! A

To overcome this, get super close to c but not exactly there:

lim
x↓c

E [Yi |Xi = x ]︸ ︷︷ ︸
approach c from above

− lim
x↑c

E [Yi |Xi = x ]︸ ︷︷ ︸
approach c from below

= lim
x↓c

E [Yi (1)|Xi = x ]︸ ︷︷ ︸
Xi ≥ c get treated

− lim
x↑c

E [Yi (0)|Xi = x ]︸ ︷︷ ︸
Xi ≥ c don’t get treated
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Sharp regression discontinuity: Treatment assignment
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Sharp regression discontinuity: Outcomes
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Sharp regression discontinuity: Identifying assumption

We only need one identifying assumption for the sharp RD:

E [Yi (1)|Xi = x ] and E [Yi (0)|Xi = x ] are continuous in x

With this assumption:

τ̂SRD = E [Yi (1)− Yi (0)|Xi = c] = lim
x↓c

E [Yi |Xi = x ]− lim
x↑c

E [Yi |Xi = x ]

In words:

• We can compare units with Xi very close to, but not exactly at, c

In other words:

• The cutoff is as good as randomly assigned

In more other words:

• There are no discrete jumps in Yi at c except due to Di

In even more other words:

• All observed and unobserved determinants of Yi (other than
treatment) are smooth around the cutoff
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RD validity tests

We can perform two major RD validity checks:

1 A “bunching” or “manipulation” test

2 A “covariate smoothness” test

→ As usual, we can’t prove the identifying assumption!

→ We can just provide evidence in favor of it!
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Manipulation tests

We are assuming that Xi − c is as good as randomly assigned:

• (In the neighborhood of c)

→ We want to make sure units can’t sort around c

→ We test this by looking at the distribution of Xi
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A manipulation test
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Covariate smoothness

We are assuming no other variables change discontinuously at c :

• We test this by looking at other variables around c

• This works for predetermeined variables only!

→ Outcomes affected by treatment may well jump at c

• This test is imperfect (why?)

→ We can’t check for smoothness of unobservables
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A covariate smoothness test
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Putting the “regression” in regression discontinuity

We want the difference in outcomes for just-treated vs. just-untreated:

τSRD = E [Yi (1)− Yi (0)|Xi = c] = lim
x↓c

E [Yi |Xi = x ]− lim
x↑c

E [Yi |Xi = x ]

We estimate average outcomes just below and above the cutoff:

τ̂SRD = Ȳ (Di = 1; c ≤ Xi ≤ c + h)− Ȳ (Di = 0; c − h ≤ Xi < c)

where c − h ≤ Xi ≤ c + h is the bandwith in which we’re “close” to c

This leads to the regression-based RD:

Yi = α + τDi + εi for c − h ≤ Xi ≤ c + h

where Di = 1[Xi ≥ c]
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How do we choose h?

Yi = α + τDi + εi for c − h ≤ Xi ≤ c + h

where c − h ≤ Xi ≤ c + h is the bandwith in which we’re “close” to c

• We want h to be small: the RD is identified only at c

• If too small, we will get imprecision (no sample density)

• We want h to be big enough: our standard errors will be huge just
using data at c

• If too big, we will get bias (comparing dissimilar units)

→ This is another example of the bias-variance tradeoff
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Bandwidth-induced bias in the RD
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Can we do better than differences in means?

Simple differences in means ignores any relationship between Yi and Xi :

• We can improve on this by controlling for the underlying relationship

• If we know Yi (Xi ) is a linear function, we can just regress:

Yi = α + τDi + β(Xi − c) + εi

= α + τ1[Xi ≥ c] + β(Xi − c) + εi

• We can also allow for different slopes above and below c :

Yi = α + τDi + β1(Xi − c)︸ ︷︷ ︸
slope below

+β2(Xi − c)Di︸ ︷︷ ︸
slope above

+εi
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Controlling for the slope
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We have to be a bit careful about this!
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A note on interpretation

External validity is an important consideration for RD:

• (This is true for all designs...)

• ... but in RD, we are estimating results at the cutoff, c

• In sharp RD, we’re estimating a LATE around the cutoff!

→ This may be different (or not) from the ATE, or other LATEs from
other cutoffs
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Recap

TL;DR:

1 The regression discontinuity is great

2 We can mimic an RCT in observational data

3 And the tests are visual and transparent
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