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From last time: wrapping up DD(D)

We met the DDD estimator:

Yiit = Bo + B1 Treat; + > Post; + [3Affected; + [B4( Treat; x Post;)
+ Bs(Post; x Affected;) + PB( Treat; x Affected;)
+ 7(Treat; x Post; x Affected;) + €jj
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A tour of research designs

We've met several research designs this quarter:

® Randomized controlled trial

e Eliminates selection bias via randomization
® Regression adjustment & matching

e Selection on observables

e Strong assumption: We observe everything that might matter
© Instrumental variables

e Use some (quasi)-random variation to move endogenous treatment

e Strong assumption: Exclusion restriction

O Panel fixed effects

e Compare units to themselves over time

e Strong assumption: Parallel counterfactual trends
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My favorite selection on unobservables design

Today, we'll meet the regression discontinuity (RD):

¢ Basic intuition: Use a (policy-induced) cutoff to compare i and j
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Today, we'll meet the regression discontinuity (RD):

¢ Basic intuition: Use a (policy-induced) cutoff to compare i and j

— Look at “barely-treated” units vs. “barely-untreated” units
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My favorite selection on unobservables design

Today, we'll meet the regression discontinuity (RD):

¢ Basic intuition: Use a (policy-induced) cutoff to compare i and j
— Look at “barely-treated” units vs. “barely-untreated” units

e Enables us to come close to mimicking random assignment

e Identifying assumptions are transparent

e We can do a lot of this in pictures
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Regression discontinuity design

As usual, we'd like to run:

Yi=a+71Di+e¢;

— We will try to mimic random assignment
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Regression discontinuity design
As usual, we'd like to run:

Yi=a+7Di+¢

— We will try to mimic random assignment

The regression discontinuity:

e Suppose D; is determined by whether or not X; lies above a cutoff, ¢

We call X; the “running variable” here

e ldea: Having X; just above or just below c is as good as random...
e ... And there is a discontinuous change in D; as a result of crossing ¢

— We can compare Y; for units with X; just above ¢ to Y; for units with
X; just below ¢
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Sharp regression discontinuity

In the most straightforward, or “sharp” RD design:
(] Pr(D,' = 1’X,' Z C) =1 and Pr(D,- = l‘X,' < C) =0
PF(D,' = 1|X,' > C) — PI’(D,' = 1‘X,' < C) =1

Nobody with X; < ¢ gets treated

Everybody with X; > ¢ gets treated

The probability of treatment jumps from 0 to 100% as X; crosses ¢
D,' = ].(X, > C)
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Sharp regression discontinuity

In the most straightforward, or “sharp” RD design:
(] Pr(D,':HX,'ZC):l and Pr(D,'Zl‘X,'<C):O
° Pr(D,':1|X,'ZC)—PI’(D,':1‘X,'<C):1

e Nobody with X; < ¢ gets treated

e Everybody with X; > c gets treated
e The probability of treatment jumps from 0 to 100% as X; crosses ¢
e D;=1(X; > ¢c)

— This is equivalent to perfect compliance in the RCT
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Sharp regression discontinuity: Treatment assignment
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Sharp regression discontinuity: Estimation

To get 7, compare units with D; = 0 and D; = 1 exactly at the cutoff:

#SF0 — E[Y;(1) - Yi(0)1X; = c]
e The estimator is defined exactly at the cutoff

e But we will never observe Y;(D; =1,X; < ¢) or Yi(D; =0,X; > ¢)

— Even in RD land, we can't escape the FPCI! £
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Sharp regression discontinuity: Estimation

To get 7, compare units with D; = 0 and D; = 1 exactly at the cutoff:

~SRD _ E[Y;(1) = Yi(0)|X; = €]

e The estimator is defined exactly at the cutoff
e But we will never observe Y;(D; =1,X; < ¢) or Yi(D; =0,X; > ¢)
— Even in RD land, we can't escape the FPCI! £
To overcome this, get super close to ¢ but not exactly there:

lim E[Y;|X; = x] — lim E[Y{|X; = X]
xlc xTc

N

~~

approach ¢ from above  approach ¢ from below
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Sharp regression discontinuity: Estimation

To get 7, compare units with D; = 0 and D; = 1 exactly at the cutoff:

~SRD _ E[Y;(1) = Yi(0)|X; = €]

e The estimator is defined exactly at the cutoff
e But we will never observe Y;(D; =1,X; < ¢) or Yi(D; =0,X; > ¢)
— Even in RD land, we can't escape the FPCI! £

To overcome this, get super close to ¢ but not exactly there:

lim E[Y;|X; = x] — lim E[Y{|X; = X]
xlc xTc

~~

approach ¢ from above  approach ¢ from below

= lim E[Y,(1)1X; = x] - lim E[¥,(0) ; =

X; > c get treated X; > c don't get treated
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Sharp regression discontinuity: Treatment assignment
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Sharp regression discontinuity: Outcomes
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Sharp regression discontinuity: ldentifying assumption

We only need one identifying assumption for the sharp RD:

E[Yi(1)|Xi = x] and E[Yi(0)|X; = x| are continuous in x
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Sharp regression discontinuity: ldentifying assumption

We only need one identifying assumption for the sharp RD:

E[Yi(1)|Xi = x] and E[Yi(0)|X; = x| are continuous in x
With this assumption:
#5R0 — EYi(1) — Y;(0)|X; = ¢] = Iiin ELYi|X;i = x] — Iip E[Yi|X; = x]
X{C XTc
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Sharp regression discontinuity: ldentifying assumption

We only need one identifying assumption for the sharp RD:

E[Yi(1)|Xi = x] and E[Yi(0)|X; = x| are continuous in x
With this assumption:
#5R0 — EYi(1) — Y;(0)|X; = ¢] = Iiin ELYi|X;i = x] — np E[Yi|X; = x]
X{C XTc
In words:

e We can compare units with X; very close to, but not exactly at, ¢
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Sharp regression discontinuity: ldentifying assumption

We only need one identifying assumption for the sharp RD:
E[Yi(1)|Xi = x] and E[Yi(0)|X; = x| are continuous in x

With this assumption:

#5R0 — EYi(1) — Y;(0)|X; = ¢] = Iiin ELYi|X;i = x] — np E[Yi|X; = x]
XJ.C XTC

In words:
e We can compare units with X; very close to, but not exactly at, ¢
In other words:
e The cutoff is as good as randomly assigned
In more other words:
e There are no discrete jumps in Y; at ¢ except due to D;
In even more other words:

o All observed and unobserved determinants of Y; (other than
treatment) are smooth around the cutoff
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RD validity tests

We can perform two major RD validity checks:

@ A “bunching” or “manipulation” test

® A “covariate smoothness” test

— As usual, we can't prove the identifying assumption!

— We can just provide evidence in favor of it!
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Manipulation tests

We are assuming that X; — c is as good as randomly assigned:

¢ (In the neighborhood of ¢)
— We want to make sure units can't sort around ¢

— We test this by looking at the distribution of X;
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A manipulation test
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Covariate smoothness

We are assuming no other variables change discontinuously at c:

e We test this by looking at other variables around ¢

e This works for predetermeined variables only!
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Covariate smoothness

We are assuming no other variables change discontinuously at c:

e We test this by looking at other variables around ¢
e This works for predetermeined variables only!

— Qutcomes affected by treatment may well jump at ¢
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Covariate smoothness

We are assuming no other variables change discontinuously at c:

e We test this by looking at other variables around ¢
e This works for predetermeined variables only!
— Qutcomes affected by treatment may well jump at ¢

e This test is imperfect (why?)
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Covariate smoothness

We are assuming no other variables change discontinuously at c:

e We test this by looking at other variables around ¢
e This works for predetermeined variables only!

— Qutcomes affected by treatment may well jump at ¢
e This test is imperfect (why?)

— We can't check for smoothness of unobservables
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A covariate smoothness test
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A covariate smoothness test
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Putting the “regression” in regression discontinuity

We want the difference in outcomes for just-treated vs. just-untreated:

R0 — E[Yi(1) — Yi(0)|X; = ¢] = Iiin E[Yi|X; = x] — Ii¥n E[Yi|X; = X]
XJ.C XTc
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Putting the “regression” in regression discontinuity

We want the difference in outcomes for just-treated vs. just-untreated:

R0 — E[Yi(1) — Yi(0)|X; = ¢] = Iiin E[Yi|X; = x] — Ii%n E[Yi|X; = X]
XJ.C XTc

We estimate average outcomes just below and above the cutoff:
#R0 — Y (Di=1;,c< X, <c+h) - Y(Di=0,c—h<X;<c)

where ¢ — h < X; < ¢ + h is the bandwith in which we're “close” to ¢
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Putting the “regression” in regression discontinuity

We want the difference in outcomes for just-treated vs. just-untreated:

R0 — E[Yi(1) — Yi(0)|X; = ¢] = Iiin E[Yi|X; = x] — Ii%n E[Yi|X; = X]
XJ.C XTc

We estimate average outcomes just below and above the cutoff:
#R0 — Y (Di=1;,c< X, <c+h) - Y(Di=0,c—h<X;<c)

where ¢ — h < X; < ¢ + h is the bandwith in which we're “close” to ¢

This leads to the regression-based RD:
Yi=a+7Dj+¢eiforc—h<X;<c+h

where D; = 1[X; > ¢]
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How do we choose h?

Yi=a+7D;j+¢eijforc—h<X;<c+h
where ¢ — h < X; < ¢ + h is the bandwith in which we're “close” to ¢
e We want h to be small: the RD is identified only at ¢

o If too small, we will get imprecision (no sample density)

e We want h to be big enough: our standard errors will be huge just
using data at ¢

e If too big, we will get bias (comparing dissimilar units)
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How do we choose h?

Yi=a+7D;j+¢eijforc—h<X;<c+h
where ¢ — h < X; < ¢ + h is the bandwith in which we're “close” to ¢

e We want h to be small: the RD is identified only at ¢

o If too small, we will get imprecision (no sample density)

e We want h to be big enough: our standard errors will be huge just
using data at ¢

e If too big, we will get bias (comparing dissimilar units)

— This is another example of the bias-variance tradeoff
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Bandwidth-induced bias in the RD

Outcome (Y)
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Bandwidth-induced bias in the RD
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Bandwidth-induced bias in the RD
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Bandwidth-induced bias in the RD
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Bandwidth-induced bias in the RD
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Bandwidth-induced bias in the RD
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Bandwidth-induced bias in the RD
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Can we do better than differences in means?

Simple differences in means ignores any relationship between Y; and X;:

e We can improve on this by controlling for the underlying relationship

e If we know Y;(X;) is a linear function, we can just regress:
Y,'Za—i-TD,'—i-,B(X,'—C)—i-E,'
:a—l-Tl[X,' > C]—f—ﬁ(Xi—C)—l-E,'
e We can also allow for different slopes above and below c:

Yi =a+7D;i + 1(Xi — ) + Bo(Xi — ¢)Dj +¢;

slope below slope above
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Controlling for the slope
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Controlling for the slope
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We have to be a bit careful about this!

C. NONLINEARITY MISTAKEN FOR DISCONTINUITY
1.5 -

0 0.2 0.4 0.6 0.8 1.0
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A note on interpretation

External validity is an important consideration for RD:

e (This is true for all designs...)
e ... but in RD, we are estimating results at the cutoff, ¢
e In sharp RD, we're estimating a LATE around the cutoff!

— This may be different (or not) from the ATE, or other LATEs from
other cutoffs
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Recap

TL;DR:

@ The regression discontinuity is great
® We can mimic an RCT in observational data

©® And the tests are visual and transparent
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