Lecture 14: Regression discontinuity I

> PPHA 34600 Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

An example: Electricity rebates in California

Policy issue:

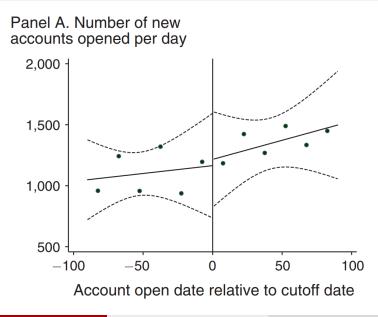
- Economists love taxes (to reduce bad stuff)!
- And electricity generation produces bad stuff
- ...but nobody else likes taxes, so policymakers often use rebates instead
- Are these rebates actually effective?

Approach:

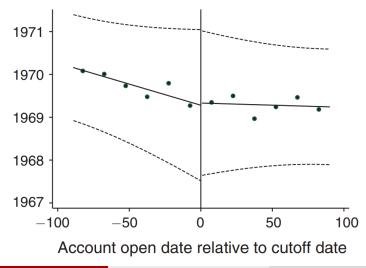
- Look at the "20/20" policy in California
- Customers who reduced energy use by 20% received a 20% discount
- Eligibility for the policy isn't random...
- ...but is determined by a policy rule:
- Customers had to have an account before a cutoff date
- $\rightarrow\,$ Use a RD model to estimate treatment effects

PPHA 34600

Program Evaluation

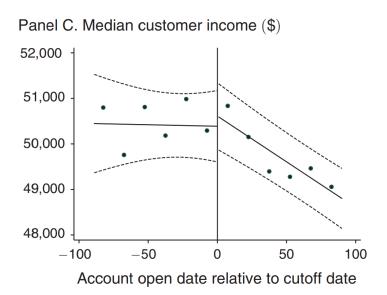

Lecture 14 1 / 7

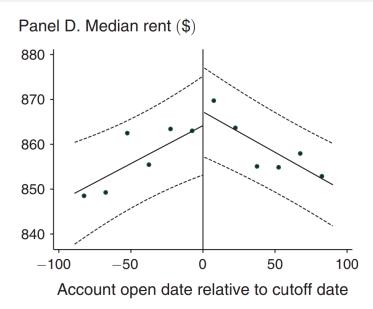
Koichiro runs a version of:

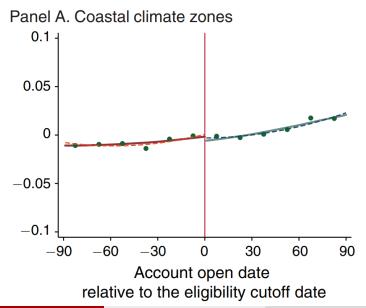

$$Y_{it} = \tau D_{it} + f(X_i) + \alpha_i + \delta_t + \varepsilon_{it} \text{ for } c - h \le X_i \le c + h$$

where

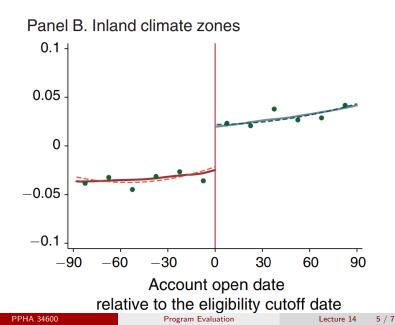
 Y_{it} : energy use by household *i* in month *t* $D_{it} = \mathbf{1}[X_i \le c] \times [t \in \text{program period}]$ *c* is a cutoff date by which accounts had to be opened for eligiblity $f(X_i)$ is a flexible function of the running variable, X_i α_i, δ_t are customer and time FE, respectively ε_{it} is an error term




Panel B. Median year structure built


PPHA 34600

Program Evaluation



Main results

Program Evaluation

Main results

Bandwidth sensitivities

	Coastal climate zones			Inland climate zones		
	(1)	(2)	(3)	(4)	(5)	(6)
Treatment effect	0.004	0.003	0.005	-0.034	-0.039	-0.029
in May	(0.004)	(0.003)	(0.004)	(0.015)	(0.014)	(0.017)
Treatment effect	-0.002	-0.001	-0.003	-0.055	-0.059	-0.05
in June	(0.004)	(0.004)	(0.004)	(0.017)	(0.016)	(0.019)
Treatment Effect in July	0.004 (0.004)	$0.005 \\ (0.004)$	$0.005 \\ (0.005)$	-0.041 (0.019)	-0.039 (0.017)	-0.042 (0.022)
Treatment effect	-0.004	-0.005	-0.003	-0.036	-0.034	-0.035
in August	(0.004)	(0.004)	(0.004)	(0.018)	(0.016)	(0.020)
Treatment effect in September	-0.005 (0.003)	$-0.003 \\ (0.004)$	-0.004 (0.004)	$\begin{array}{c} -0.056 \\ (0.016) \end{array}$	$\begin{array}{c} -0.053 \\ (0.015) \end{array}$	-0.052 (0.018)
Controls for $f(x)$	Local linear	Quadratic	Quadratic	Local linear	Quadratic	Quadratic
Bandwidth	90 days	120 days	60 days	90 days	120 days	60 days
Observations	2,540,472	3,325,388	1,707,589	208,537	237,264	162,067

Notes: This table shows RD estimates with different bandwidth choices and alternative controls for the running variable. The dependent variable is the log of electricity consumption. The standard errors are clustered at the customer level to adjust for serial correlation.

	Coastal	Inland	Total
Number of customers	3,190,027	299,178	3,489,205
Consumption in summer 2005 (kWh)	8,247,457,920	1,154,292,248	9,401,750,168
Direct program cost for rebate (\$)	9,358,919	1,250,621	10,609,540
Estimated reduction (kWh)	9,908,840	50,605,714	60,514,555
Estimated reduction in carbon dioxide (ton)	4,459	22,773	27,232
Program cost per kWh (\$/kWh)	0.945	0.025	0.175
Program cost per carbon dioxide (\$/ton)	2,099	55	390
Program cost per carbon dioxide (\$/ton) (Adjusted for noncarbon external benefits)	2,090	46	381

TABLE 8—PROGRAM COST PER ESTIMATED REDUCTIONS IN CONSUMPTION AND CARBON DIOXIDE