Lecture 13: Panel data III

PPHA 34600 Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

An example: Biking to school for girls

Policy issue:

- Large gender gaps in education persist in developing countries
- We want to increase girls' participation in schooling
- How do we accomplish this?

Approach:

- Program to provide girls with bikes
- Estimate the impacts of cycling program on schooling
- We didn't randomize bikes
- ...but we can do a girls-vs-boys, pre-vs-post, Jharkhand-vs-Bihar comparison
- $\rightarrow\,$ Use a DDD model to estimate treatment effects

The authors will run a version of:

$$\begin{aligned} Y_{ijt} &= \beta_0 + \beta_1 \operatorname{Girl}_i + \beta_2 \operatorname{YoungCohort}_t + \beta_3 \operatorname{State}_j + \beta_4 (\operatorname{Girl}_i \times \operatorname{Post}_t) \\ &+ \beta_5 (\operatorname{YoungCohort}_t \times \operatorname{State}_j) + \beta_6 (\operatorname{Girl}_i \times \operatorname{State}_j) \\ &+ \tau (\operatorname{Girl}_i \times \operatorname{YoungCohort}_t \times \operatorname{State}_j) + \varepsilon_{ijt} \end{aligned}$$

where

 Y_{ijt} is education for person *i* in time *t* in state *j* $Girl_i \times YoungCohort_t \times State_j$ turns on for girls in Bihar in young cohorts

Gender gaps in schooling

Panel A. Enrollment in school by age and gender

Gaps by distance

Panel B: 16- and 17-year-olds enrolled in or completed grade 9 by distance and gender

Test of parallel trends

TABLE 1—TESTING THE PARALLEL TRENDS ASSUMPTION

Dependent vari	iable: log (9th grade enrollment by school, g	ender, and year)
Panel A. Testing parallel Female × year	l trends for the difference-in-differences (DE	0) 0.0518 (0.00)
Female		-0.870 (0.06)
Year (coded as 1 to 4)		0.0852 (0.01)
Constant		4.235 (0.05)
Observations R^2		20,266 0.167
Panel B. Testing parallel Female × year × Biha	l trends for the triple differences (DDD) Ir	-0.0100 (0.01)
$\text{Female} \times \text{year}$		0.0618 (0.01)
$\text{Female} \times \text{Bihar}$		0.175 (0.11)
Bihar \times year		$\begin{array}{c} 0.0290 \\ (0.01) \end{array}$
Female		-1.045
HA 34600	Program Evaluation	Lecture 13

5/9

Treatment effects

Dependent variable: Enrolled in or completed grade 9					
Treatment group = age 14 and 15					
Control group = age 16 and 17	(1)	(2)	(3)	(4)	
Treat \times female \times Bihar	0.103 (0.030)	0.091 (0.029)	0.052 (0.025)	0.052 (0.025)	
Treat \times female	0.020 (0.026)	$0.024 \\ (0.026)$	$\begin{array}{c} 0.038 \\ (0.021) \end{array}$	$0.039 \\ (0.021)$	
Treat \times Bihar	-0.044 (0.018)	$\begin{array}{c} -0.042 \\ (0.018) \end{array}$	-0.029 (0.016)	-0.028 (0.016)	
Female \times Bihar	-0.094 (0.023)	$\begin{array}{c} -0.091 \\ (0.023) \end{array}$	$\begin{array}{c} -0.067 \\ (0.020) \end{array}$	$-0.066 \\ (0.020)$	
Treat	$-0.148 \\ (0.014)$	$\begin{array}{c} -0.143 \\ (0.014) \end{array}$	$\begin{array}{c} -0.138 \\ (0.013) \end{array}$	$\begin{array}{c} -0.138 \\ (0.013) \end{array}$	
Female	$-0.092 \\ (0.020)$	$\begin{array}{c} -0.088 \\ (0.020) \end{array}$	$\begin{array}{c} -0.100 \\ (0.017) \end{array}$	$\begin{array}{c} -0.101 \\ (0.017) \end{array}$	
Bihar	0.011 (0.016)	$\begin{array}{c} -0.044 \\ (0.016) \end{array}$	$-0.032 \\ (0.015)$	-0.044 (0.015)	
Constant	0.464 (0.013)	$\begin{array}{c} 0.771 \\ (0.024) \end{array}$	$\begin{array}{c} 0.593 \\ (0.027) \end{array}$	$\begin{array}{c} 0.562 \\ (0.040) \end{array}$	
Demographic controls HH socioeconomic controls Village level controls Observations P2	No No 30,295 0.035	Yes No 30,295	Yes Yes No 30,147 0 207	Yes Yes 30,112 0,208	

Treatment effects by distance

TABLE 3—QUADRUPLE DIFFERENCE (DDDD) ESTIMATE OF THE IMPACT OF BEING EXPOSED TO THE CYCLE PROGRAM ON GIRL'S SECONDARY SCHOOL ENROLLMENT BY DISTANCE TO SECONDARY SCHOOL

Dependent	ariable: Enrolled in or compl	eted grade 9		
Treatment group = age 14 and 15				
Control group = age 16 and 17	(1)	(2)	(3)	(4)
$\textbf{Treat} \times \textbf{female} \times \textbf{Bihar} \times \textbf{long distanc}$	e indicator 0.094	0.088	0.088	0.087
	(0.058)	(0.056)	(0.050)	(0.050)
$Treat \times female \times long \ distance \ indicator$	-0.079	-0.080	-0.074	-0.073
	(0.050)	(0.048)	(0.043)	(0.043)
$Treat \times female \times Bihar$	0.043	0.034	-0.005	-0.004
	(0.041)	(0.039)	(0.038)	(0.038)
$Female \times Bihar \times long \ distance \ indicator$	-0.083	-0.075	-0.069	-0.070
	(0.045)	(0.043)	(0.039)	(0.039)
$Treat \times Bihar \times long \ distance \ indicator$	-0.029	-0.025	-0.009	-0.009
	(0.036)	(0.036)	(0.033)	(0.033)
Treat \times female	0.072	0.077	0.088	0.087
	(0.035)	(0.033)	(0.032)	(0.032)
Treat \times long distance indicator	0.037	0.039	0.032	0.031
	(0.029)	(0.029)	(0.026)	(0.026)
Treat \times Bihar	-0.023	-0.022	-0.018	-0.018
	(0.027)	(0.027)	(0.025)	(0.025)
Female \times long distance indicator	0.065	0.063	0.058	0.057
	(0.038)	(0.037)	(0.033)	(0.033)
$Female \times Bihar$	-0.042	-0.043	-0.023	-0.022
	(0.032)	(0.031)	(0.029)	(0.029)
Bihar \times long distance indicator	0.014	0.022	0.007	0.008
	(0.034)	(0.032)	(0.028)	(0.028)
Treat	-0.172	-0.168	-0.159	-0.159
	(0.023)	(0.022)	(0.021)	(0.021)
Female	-0.135	-0.130	-0.138	-0.139
	(0.028)	(0.026)	(0.025)	(0.025)
Bihar	-0.009	-0.066	-0.043	-0.054
	(0.026)	(0.024)	(0.021)	(0.021)
Long distance indicator	-0.075	-0.073	-0.044	-0.040
	(0.028)	(0.026)	(0.023)	(0.023)
Constant	0.513	0.816	0.622	0.587

7 / 9

Triple difference in distance

Panel A. Bihar double difference by distance to secondary school

Panel B. Jharkhand double difference by distance to secondary school

Panel C. Triple difference by distance to secondary school

Program Evaluation

Impacts on tests

Triple difference (DDD) estimate of impact of exposure to cycle program			
Dependent variable	log (number of candidates who appeared for the 10th grade exam) (1)	log (number of candidates who passed the 10th grade exam) (2)	
Bihar \times female \times post	0.184 (0.065)	0.122 (0.068)	
Female \times Bihar	-0.266 (0.046)	-0.224 (0.047)	
Bihar \times post	$ \begin{array}{c} 0.083 \\ (0.045) \end{array} $	0.021 (0.047)	
Female \times post	0.138 (0.056)	0.117 (0.058)	
Female	-0.628 (0.039)	-0.697 (0.040)	
Bihar	0.239 (0.032)	0.213 (0.032)	
Post	0.247 (0.040)	$ \begin{array}{c} 0.171 \\ (0.041) \end{array} $	
Constant	4.510 (0.028)	4.280 (0.028)	
Observations R^2	15,694 0.175	15,630 0.156	