Lecture 12: Panel data II

PPHA 34600

Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

From last time: regression-based DD

The simplest implementation of DD is just:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$

From last time: regression-based DD

The simplest implementation of DD is just:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$
We can implement this via the following regression:

$$
Y_{i}=\alpha+\tau \text { Treat } \times \text { Post }_{i t}+\beta \text { Treat }_{i}+\delta \text { Post }_{t}+\varepsilon_{i t}
$$

From last time: regression-based DD

The simplest implementation of DD is just:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$
We can implement this via the following regression:

$$
Y_{i}=\alpha+\tau \text { Treat } \times \text { Post }_{i t}+\beta \text { Treat }_{i}+\delta \text { Post }_{t}+\varepsilon_{i t}
$$

To link these together, see:
$\bar{Y}($ treat, post $)=\hat{\alpha}+\hat{\tau}+\hat{\beta}+\hat{\delta}$
$\bar{Y}($ treat, pre $)=\hat{\alpha}+\hat{\beta}$
$\rightarrow \bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $)=\hat{\delta}+\hat{\tau}$

From last time: regression-based DD

The simplest implementation of DD is just:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$
We can implement this via the following regression:

$$
Y_{i}=\alpha+\tau \text { Treat } \times \text { Post }_{i t}+\beta \text { Treat }_{i}+\delta \text { Post }_{t}+\varepsilon_{i t}
$$

To link these together, see:
$\bar{Y}($ treat, post $)=\hat{\alpha}+\hat{\tau}+\hat{\beta}+\hat{\delta}$
$\bar{Y}($ treat, pre $)=\hat{\alpha}+\hat{\beta}$
$\rightarrow \bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $)=\hat{\delta}+\hat{\tau}$
and
$\bar{Y}($ untreat, post $)=\hat{\alpha}+\hat{\delta}$
$\bar{Y}($ untreat, pre $)=\hat{\alpha}$
$\rightarrow \bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $)=\hat{\delta}$

From last time: regression-based DD

The simplest implementation of DD is just:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$
We can implement this via the following regression:

$$
Y_{i}=\alpha+\tau \text { Treat } \times \text { Post }_{i t}+\beta \text { Treat }_{i}+\delta \text { Post }_{t}+\varepsilon_{i t}
$$

To link these together, see:
$\bar{Y}($ treat, post $)=\hat{\alpha}+\hat{\tau}+\hat{\beta}+\hat{\delta}$
$\bar{Y}($ treat, pre $)=\hat{\alpha}+\hat{\beta}$
$\rightarrow \bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $)=\hat{\delta}+\hat{\tau}$
and
$\bar{Y}($ untreat, post $)=\hat{\alpha}+\hat{\delta}$
$\bar{Y}($ untreat, pre $)=\hat{\alpha}$
$\rightarrow \bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $)=\hat{\delta}$
Running this regression yields $\hat{\tau}=\hat{\tau}^{D D}$

Assessing the validity of the identifying assumption

The identifying assumption for the DD:
In words:

- Parallel counterfactual trends

Assessing the validity of the identifying assumption

The identifying assumption for the DD:
In words:

- Parallel counterfactual trends

In mathier words:

- $E\left[\varepsilon_{i t} \mid\right.$ Treat $_{i}$, Post $\left._{t}, X_{i t}\right]=0$

In different words:

- Conditional on covariates, treatment is as good as randomly assigned In other different words:
- Treated and untreated units would be on similar trajectories if not for treatment

Assessing the validity of the identifying assumption

The identifying assumption for the DD:
In words:

- Parallel counterfactual trends

In mathier words:

- $E\left[\varepsilon_{i t} \mid\right.$ Treat $_{i}$, Post $\left._{t}, X_{i t}\right]=0$

In different words:

- Conditional on covariates, treatment is as good as randomly assigned In other different words:
- Treated and untreated units would be on similar trajectories if not for treatment
\rightarrow Just controlling for Treat ${ }_{i}$ and Post $_{t}$ is usually not good enough!
\rightarrow We also need a story for why Treat $_{i} \times$ Post $_{t}$ is quasi-random!

Fixed effects models

DD is a specific case of the fixed effects model, which lets us:

- Easily incorporate more units and time periods
- Allow for different units to be treated at different time periods
- Allow the effect of treatment to vary over time
- Enable us to more easily asssess the identifying assumptions

Fixed effects models

Consider a basic panel data regression:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\varepsilon_{i t}
$$

Fixed effects models

Consider a basic panel data regression:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\varepsilon_{i t}
$$

We can split $\varepsilon_{i t}$ into three components:

$$
\varepsilon_{i t}=\alpha_{i}+\delta_{t}+\nu_{i t}
$$

- α_{i} : Individual-specific time-invariant bit
- δ_{t} : Common time-period-specific bit
- $\nu_{i t}$: Remaining individual-by-time varying unobserved bit

Fixed effects models

Consider a basic panel data regression:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\varepsilon_{i t}
$$

We can split $\varepsilon_{i t}$ into three components:

$$
\varepsilon_{i t}=\alpha_{i}+\delta_{t}+\nu_{i t}
$$

- α_{i} : Individual-specific time-invariant bit
- δ_{t} : Common time-period-specific bit
- $\nu_{i t}$: Remaining individual-by-time varying unobserved bit

Can we do better than leaving all of these in the error term?

Fixed effects models

Enter the fixed effects model:

- We want to control for α_{i} and δ_{t} : they might be correlated with $D_{i t}$

Fixed effects models

Enter the fixed effects model:

- We want to control for α_{i} and δ_{t} : they might be correlated with $D_{i t}$

There are two main ways to do this:
(1) Use dummy variables
(2) "De-meaning" the data

Fixed effects models

Enter the fixed effects model:

- We want to control for α_{i} and δ_{t} : they might be correlated with $D_{i t}$

There are two main ways to do this:
(1) Use dummy variables

2 "De-meaning" the data
\rightarrow These are both "fixed effects" estimators

Fixed effects estimator 1: Use dummy variables

Consider the following regression model with only individual (no time) effects:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\alpha_{i}+\nu_{i t}
$$

Fixed effects estimator 1: Use dummy variables

Consider the following regression model with only individual (no time) effects:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\alpha_{i}+\nu_{i t}
$$

Enter the dummy variable approach:

- We'd like to "control for" α_{i} (ie, separate α_{i} from the error term)
- But what are these $\alpha_{i} s$?
- Just individual-specific effects (intercepts, if you want)

Fixed effects estimator 1: Use dummy variables

Consider the following regression model with only individual (no time) effects:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\alpha_{i}+\nu_{i t}
$$

Enter the dummy variable approach:

- We'd like to "control for" α_{i} (ie, separate α_{i} from the error term)
- But what are these $\alpha_{i} s$?
- Just individual-specific effects (intercepts, if you want)
- So we should be able to just add a control variable for each person
- We do this with dummy variables: $l_{i}=1$ for unit $i, 0$ for all $j \neq i$

Fixed effects estimator 1: Use dummy variables

Consider the following regression model with only individual (no time) effects:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\alpha_{i}+\nu_{i t}
$$

Enter the dummy variable approach:

- We'd like to "control for" α_{i} (ie, separate α_{i} from the error term)
- But what are these $\alpha_{i} s$?
- Just individual-specific effects (intercepts, if you want)
- So we should be able to just add a control variable for each person
- We do this with dummy variables: $l_{i}=1$ for unit $i, 0$ for all $j \neq i$

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\sum_{i=1}^{N} 1[u n i t=i]_{i}+\nu_{i t}
$$

Fixed effects estimator 2: De-meaning

Consider the following regression model with only individual (no time) effects:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\alpha_{i}+\nu_{i t}
$$

We can get the same effect as adding dummies by "de-meaning" the data

- In general, define $\tilde{V}_{i t}=V_{i t}-\frac{1}{T} \sum_{t=1}^{T} V_{i t}=V_{i t}-\bar{V}_{i}$

Fixed effects estimator 2: De-meaning

Consider the following regression model with only individual (no time) effects:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\alpha_{i}+\nu_{i t}
$$

We can get the same effect as adding dummies by "de-meaning" the data

- In general, define $\tilde{V}_{i t}=V_{i t}-\frac{1}{T} \sum_{t=1}^{T} V_{i t}=V_{i t}-\bar{V}_{i}$
- $\tilde{Y}_{i t}=Y_{i t}-\bar{Y}_{i}$: Outcome minus averaged outcome
- $\tilde{X}_{i t}=X_{i t}-\bar{X}_{i}$: Covariate(s) minus averaged covariate(s)
- $\tilde{D}_{i t}=D_{i t}-\bar{D}_{i}$: Treatment minus averaged treatment
- $\tilde{\alpha}_{i}=\alpha_{i}-\bar{\alpha}_{i}=0$: Individual effect minus averaged individual effect
- $\tilde{\nu}_{i t}=\nu_{i t}-\bar{\nu}_{i}$: Error minus averaged error

Fixed effects estimator 2: De-meaning

Consider the following regression model with only individual (no time) effects:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\alpha_{i}+\nu_{i t}
$$

We can get the same effect as adding dummies by "de-meaning" the data

- In general, define $\tilde{V}_{i t}=V_{i t}-\frac{1}{T} \sum_{t=1}^{T} V_{i t}=V_{i t}-\bar{V}_{i}$
- $\tilde{Y}_{i t}=Y_{i t}-\bar{Y}_{i}$: Outcome minus averaged outcome
- $\tilde{X}_{i t}=X_{i t}-\bar{X}_{i}$: Covariate(s) minus averaged covariate(s)
- $\tilde{D}_{i t}=D_{i t}-\bar{D}_{i}$: Treatment minus averaged treatment
- $\tilde{\alpha}_{i}=\alpha_{i}-\bar{\alpha}_{i}=0$: Individual effect minus averaged individual effect
- $\tilde{\nu}_{i t}=\nu_{i t}-\bar{\nu}_{i}$: Error minus averaged error

We can then express the "de-meaned" version of our model:

$$
\tilde{Y}_{i t}=\tilde{X}_{i t} \beta+\tau \tilde{D}_{i t}+\tilde{\nu}_{i t}
$$

Fixed effects estimator 2: De-meaning

Consider the following regression model with only individual (no time) effects:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\alpha_{i}+\nu_{i t}
$$

We can get the same effect as adding dummies by "de-meaning" the data

- In general, define $\tilde{V}_{i t}=V_{i t}-\frac{1}{T} \sum_{t=1}^{T} V_{i t}=V_{i t}-\bar{V}_{i}$
- $\tilde{Y}_{i t}=Y_{i t}-\bar{Y}_{i}$: Outcome minus averaged outcome
- $\tilde{X}_{i t}=X_{i t}-\bar{X}_{i}$: Covariate(s) minus averaged covariate(s)
- $\tilde{D}_{i t}=D_{i t}-\bar{D}_{i}$: Treatment minus averaged treatment
- $\tilde{\alpha}_{i}=\alpha_{i}-\bar{\alpha}_{i}=0$: Individual effect minus averaged individual effect
- $\tilde{\nu}_{i t}=\nu_{i t}-\bar{\nu}_{i}$: Error minus averaged error

We can then express the "de-meaned" version of our model:

$$
\tilde{Y}_{i t}=\tilde{X}_{i t} \beta+\tau \tilde{D}_{i t}+\tilde{\nu}_{i t}
$$

\rightarrow This gives you the same result as "controlling for" α_{i}

We can extend these estimators to a more complex model

Consider the regression model with both individual and time effects:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\alpha_{i}+\delta_{t}+\nu_{i t}
$$

We can extend these estimators to a more complex model

Consider the regression model with both individual and time effects:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\alpha_{i}+\delta_{t}+\nu_{i t}
$$

The dummy variable method for controlling for α_{i} and δ_{t} is:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\sum_{i=1}^{N} \mathbf{1}[\text { unit }=i]_{i}+\sum_{t=1}^{T} \mathbf{1}[\text { time }=t]_{t}+\nu_{i t}
$$

We can extend these estimators to a more complex model

Consider the regression model with both individual and time effects:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\alpha_{i}+\delta_{t}+\nu_{i t}
$$

The dummy variable method for controlling for α_{i} and δ_{t} is:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\sum_{i=1}^{N} \mathbf{1}[\text { unit }=i]_{i}+\sum_{t=1}^{T} \mathbf{1}[\text { time }=t]_{t}+\nu_{i t}
$$

De-meaning is more annoying. Now we de-mean by both time and unit: Define

$$
\begin{gathered}
\tilde{V}_{i t}=V_{i t}-\frac{1}{T} \sum_{t=1}^{T} V_{i t}-\frac{1}{N} \sum_{i=1}^{N} V_{i t}+\frac{1}{N \times T} \sum_{i=1}^{N} \sum_{t=1}^{T} V_{i t} \\
=V_{i t}-\bar{V}_{i}-\bar{V}_{t}+\overline{\bar{V}}_{i t}
\end{gathered}
$$

We can extend these estimators to a more complex model

Consider the regression model with both individual and time effects:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\alpha_{i}+\delta_{t}+\nu_{i t}
$$

The dummy variable method for controlling for α_{i} and δ_{t} is:

$$
Y_{i t}=X_{i t} \beta+\tau D_{i t}+\sum_{i=1}^{N} \mathbf{1}[\text { unit }=i]_{i}+\sum_{t=1}^{T} \mathbf{1}[\text { time }=t]_{t}+\nu_{i t}
$$

De-meaning is more annoying. Now we de-mean by both time and unit: Define

$$
\begin{gathered}
\tilde{V}_{i t}=V_{i t}-\frac{1}{T} \sum_{t=1}^{T} V_{i t}-\frac{1}{N} \sum_{i=1}^{N} V_{i t}+\frac{1}{N \times T} \sum_{i=1}^{N} \sum_{t=1}^{T} V_{i t} \\
=V_{i t}-\bar{V}_{i}-\bar{V}_{t}+\overline{\bar{V}}_{i t}
\end{gathered}
$$

The model is now:

$$
\tilde{Y}_{i t}=\tilde{X}_{i t} \beta+\tau \tilde{D}_{i t}+\tilde{\nu}_{i t}
$$

Connecting FE to DD

Remember that we started with a simple DD model:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$

Connecting FE to DD

Remember that we started with a simple DD model:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$
We can represent this as a regression as well:

$$
Y_{i t}=\alpha+\tau\left(\text { Treat } \times \text { Post }_{i t}+\gamma \text { Treat }_{i}+\delta \text { Post }_{t}+\beta X_{i t}+\varepsilon_{i t}\right.
$$

Connecting FE to DD

Remember that we started with a simple DD model:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$
We can represent this as a regression as well:

$$
Y_{i t}=\alpha+\tau\left(\text { Treat } \times \text { Post }_{i t}+\gamma \text { Treat }_{i}+\delta \text { Post }_{t}+\beta X_{i t}+\varepsilon_{i t}\right.
$$

In slightly different notation:

$$
Y_{i t}=\alpha+\tau D_{i t}+\gamma \text { Treat }_{i}+\delta \text { Post }_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

Connecting FE to DD

Remember that we started with a simple DD model:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$
We can represent this as a regression as well:

$$
Y_{i t}=\alpha+\tau\left(\text { Treat } \times \text { Post }^{2}\right)_{i t}+\gamma \text { Treat }_{i}+\delta \text { Post }_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

In slightly different notation:

$$
Y_{i t}=\alpha+\tau D_{i t}+\gamma \text { Treat }_{i}+\delta \text { Post }_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

Now let's generalize:

$$
Y_{i t}=\tau D_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

- α_{i} is a (set of) individual fixed effects, which captures Treat ${ }_{i}$
- δ_{t} is a (set of) time fixed effects, which captures Post $_{t}$

Connecting FE to DD

Remember that we started with a simple DD model:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$
We can represent this as a regression as well:

$$
Y_{i t}=\alpha+\tau\left(\text { Treat } \times \text { Post }^{2}\right)_{i t}+\gamma \text { Treat }_{i}+\delta \text { Post }_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

In slightly different notation:

$$
Y_{i t}=\alpha+\tau D_{i t}+\gamma \text { Treat }_{i}+\delta \text { Post }_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

Now let's generalize:

$$
Y_{i t}=\tau D_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

- α_{i} is a (set of) individual fixed effects, which captures Treat ${ }_{i}$
- δ_{t} is a (set of) time fixed effects, which captures Post $_{t}$
\rightarrow Note that we've lost α : this is now collinear with α_{i}
\rightarrow With just two units, α_{i} is just $\mathbf{1}[u n i t=i]$ and $\mathbf{1}[u n i t=j]$
\rightarrow With just two time periods, α_{i} is just $\mathbf{1}[$ time $=0]$ and $\mathbf{1}[$ time $=1]$

Extending DD to multiple treatment times

What happens if we have treated units who get treated at different times?

- Our new general formulation works!

$$
Y_{i t}=\tau D_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

Extending DD to multiple treatment times

What happens if we have treated units who get treated at different times?

- Our new general formulation works!

$$
Y_{i t}=\tau D_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

- $D_{i t}$ can turn from 0 to 1 at different times for different units
- (Or can stay 0 always for some units)
- (Or can stay 1 always for some units)

Extending DD to multiple treatment times

What happens if we have treated units who get treated at different times?

- Our new general formulation works!

$$
Y_{i t}=\tau D_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

- $D_{i t}$ can turn from 0 to 1 at different times for different units
- (Or can stay 0 always for some units)
- (Or can stay 1 always for some units)

Important note: Running this specification gets you a weighted average of several comparisons. This may not be exactly what you want!

What does multiple-treatment-timing FE get us?

What does multiple-treatment-timing FE get us?

What does multiple-treatment-timing FE get us?
B. Late Group vs. Untreated Group

What does multiple-treatment-timing FE get us?

How do we do this right?

There are two main solutions to this problem:
(1) Weighted balance test to make sure this isn't a problem

- Beyond the scope of this class
(2) Artificially "treat all units at the same time"

The event study design

An event study is a more general FE design:
Our standard FE regression model:

$$
Y_{i t}=\tau D_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

- This imposes the constraint that $\tau_{t}=\tau$ for all t
- (And all i, but that's a problem for a different day)

The event study design

An event study is a more general FE design:
Our standard FE regression model:

$$
Y_{i t}=\tau D_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

- This imposes the constraint that $\tau_{t}=\tau$ for all t
- (And all i, but that's a problem for a different day)

A more general model will allow differential effects over time:

$$
Y_{i t}=\sum_{r=0}^{R} \tau_{r} D_{i} \times \mathbf{1}[\text { periods post treatment }=r]_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

1 [periods post treatment $=r]_{i t}=1$ when we are r periods after treatment, 0 otherwise

The event study design

An event study is a more general FE design:
Our standard FE regression model:

$$
Y_{i t}=\tau D_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

- This imposes the constraint that $\tau_{t}=\tau$ for all t
- (And all i, but that's a problem for a different day)

A more general model will allow differential effects over time:

$$
Y_{i t}=\sum_{r=0}^{R} \tau_{r} D_{i} \times \mathbf{1}[\text { periods post treatment }=r]_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

$\mathbf{1}$ [periods post treatment $=r]_{i t}=1$ when we are r periods after treatment, 0 otherwise

- The $\tau_{r} s$ pick up the average treatment effect r periods after treatment

The event study design

In the general version of this model, we include pre-treatment "effects":

$$
Y_{i t}=\sum_{r=-S}^{R} \tau_{r} D_{i} \times \mathbf{1}[\text { periods to treatment }=r]_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

- (Note the number of pre-treatment periods, S, and the number of post-treatment periods, R, need not be the same)

The event study design

In the general version of this model, we include pre-treatment "effects":

$$
Y_{i t}=\sum_{r=-S}^{R} \tau_{r} D_{i} \times \mathbf{1}[\text { periods to treatment }=r]_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

- (Note the number of pre-treatment periods, S, and the number of post-treatment periods, R, need not be the same)
What's so great about this design?
- This "lines up" treatment at the same time for everyone
- We can still use fixed effects to soak up confounders
- We get a (partial) test of the identifying assumption

The event study design

In the general version of this model, we include pre-treatment "effects":

$$
Y_{i t}=\sum_{r=-S}^{R} \tau_{r} D_{i} \times \mathbf{1}[\text { periods to treatment }=r]_{i t}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

- (Note the number of pre-treatment periods, S, and the number of post-treatment periods, R, need not be the same)

What's so great about this design?

- This "lines up" treatment at the same time for everyone
- We can still use fixed effects to soak up confounders
- We get a (partial) test of the identifying assumption
\rightarrow We want pre-treatment τ_{s} 's to be centered on 0 and not trending

Event studies should always be shown graphically

Cumulative effects

We're often interested in summing up effects over time:

- This is a simple extension of per-period event study effects
- And very powerful!
- We can use this to understand if treatment moves things in time
- Or happens and fades away
- Or remains important over time

Cumulative effects

We estimate cumulative effects with a distributed lag model:

$$
Y_{i t}=\sum_{s=0}^{S} \tau_{s} D_{i, t-s}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

where $D_{i, t-s}$ is an indicator equal to the treatment status in period $t-s$

Cumulative effects

We estimate cumulative effects with a distributed lag model:

$$
Y_{i t}=\sum_{s=0}^{S} \tau_{s} D_{i, t-s}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

where $D_{i, t-s}$ is an indicator equal to the treatment status in period $t-s$

- τ_{0} gives the effect in the treatment period
- τ_{1} gives the marginal effect of treatment 1 period later
- τ_{2} gives the marginal effect of treatment 2 periods later
- τ_{S} gives the marginal effect of treatment S periods later

Cumulative effects

We estimate cumulative effects with a distributed lag model:

$$
Y_{i t}=\sum_{s=0}^{S} \tau_{s} D_{i, t-s}+\alpha_{i}+\delta_{t}+\beta X_{i t}+\varepsilon_{i t}
$$

where $D_{i, t-s}$ is an indicator equal to the treatment status in period $t-s$

- τ_{0} gives the effect in the treatment period
- τ_{1} gives the marginal effect of treatment 1 period later
- τ_{2} gives the marginal effect of treatment 2 periods later
- τ_{S} gives the marginal effect of treatment S periods later
\rightarrow The cumulative effect q periods after treatment is:

$$
T_{q}=\sum_{s=0}^{q} \tau_{s}
$$

Recap

TL;DR:
(1) We like the difference-in-differences approach a lot
(2) We discussed estimation with fixed effects
(3) And covered the event study version

