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From last time: regression-based DD

The simplest implementation of DD is just:

7DD — (Y (treat, post)— Y (treat, pre))—(Y (untreat, post)— Y (untreat, pre))
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7DD — (Y (treat, post)— Y (treat, pre))—(Y (untreat, post)— Y (untreat, pre))

We can implement this via the following regression:

Y; = a+ 7 Treat x Postj + (3 Treat; + d Post; + €

To link these together, see:

Y (treat, post) = & + 7 + B+6

Y (treat, pre) = & + &

— Y (treat, post) — Y (treat, pre) = 6 + 7
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Y; = a+ 7 Treat x Postj + (3 Treat; + d Post; + €

To link these together, see:

Y (treat, post) = & + 7 + B+6

Y (treat, pre) = & + &

— Y (treat, post) — Y (treat, pre) = 6 + 7
and

Y (untreat, post) = & + &

Y (untreat, pre) = &
— Y (untreat, post) — Y (untreat, pre) = ¢

PPHA 34600 Program Evaluation

Lecture 12 1/18



From last time: regression-based DD

The simplest implementation of DD is just:
7DD — (Y (treat, post)— Y (treat, pre))—(Y (untreat, post)— Y (untreat, pre))

We can implement this via the following regression:

Y; = a+ 7 Treat x Postj + (3 Treat; + d Post; + €

To link these together, see:

Y (treat, post) = & + 7 + B+6

Y (treat, pre) = & + &

— Y (treat, post) — Y (treat, pre) = 6 + 7
and

Y (untreat, post) = & + &

Y (untreat, pre) = &
— Y (untreat, post) — Y (untreat, pre) = ¢

Running this regression yields 7 = #0P
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Assessing the validity of the identifying assumption

The identifying assumption for the DD:

In words:

e Parallel counterfactual trends
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Assessing the validity of the identifying assumption

The identifying assumption for the DD:
In words:

e Parallel counterfactual trends
In mathier words:

o E[ej| Treat;, Post;, Xiy] =0
In different words:

e Conditional on covariates, treatment is as good as randomly assigned
In other different words:

e Treated and untreated units would be on similar trajectories if not for
treatment
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Assessing the validity of the identifying assumption

The identifying assumption for the DD:

In words:
e Parallel counterfactual trends
In mathier words:
o E[ej| Treat;, Post;, Xiy] =0
In different words:
e Conditional on covariates, treatment is as good as randomly assigned
In other different words:
e Treated and untreated units would be on similar trajectories if not for
treatment
— Just controlling for Treat; and Post; is usually not good enough!

— We also need a story for why Treat; x Post; is quasi-random!
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Fixed effects models

DD is a specific case of the fixed effects model, which lets us:

e Easily incorporate more units and time periods

o Allow for different units to be treated at different time periods

Allow the effect of treatment to vary over time

Enable us to more easily asssess the identifying assumptions
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Fixed effects models

Consider a basic panel data regression:

Yit = XitB + 7Djt + €j¢
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Fixed effects models

Consider a basic panel data regression:
Yit = Xit8 + 7Dt + €it
We can split €;; into three components:

Eit = i + 0t + Vit
e «;: Individual-specific time-invariant bit

e §;: Common time-period-specific bit

e v Remaining individual-by-time varying unobserved bit
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Fixed effects models

Consider a basic panel data regression:
Yit = Xit8 + 7Dt + €it
We can split €;; into three components:

Eit = i + 0t + Vit

e «;: Individual-specific time-invariant bit
e J;: Common time-period-specific bit

e v Remaining individual-by-time varying unobserved bit

Can we do better than leaving all of these in the error term?

PPHA 34600 Program Evaluation Lecture 12 4/18



Fixed effects models

Enter the fixed effects model:

e We want to control for «; and d;: they might be correlated with Dj;
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Fixed effects models

Enter the fixed effects model:

e We want to control for «; and d;: they might be correlated with Dj;

There are two main ways to do this:

@® Use dummy variables
® “De-meaning” the data

— These are both “fixed effects” estimators
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Fixed effects estimator 1: Use dummy variables

Consider the following regression model with only individual (no time)
effects:
Yie = Xt + 7Dit + v + Vi
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Consider the following regression model with only individual (no time)
effects:

Yie = Xt + 7Dit + v + Vi

Enter the dummy variable approach:

o We'd like to “control for" «; (ie, separate «; from the error term)

e But what are these «;s?

e Just individual-specific effects (intercepts, if you want)
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Consider the following regression model with only individual (no time)
effects:

Yie = Xt + 7Dit + v + Vi

Enter the dummy variable approach:

o We'd like to “control for" «; (ie, separate «; from the error term)

But what are these «;s?

Just individual-specific effects (intercepts, if you want)

So we should be able to just add a control variable for each person

We do this with dummy variables: /; = 1 for unit i, 0 for all j # /
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Fixed effects estimator 1: Use dummy variables

Consider the following regression model with only individual (no time)
effects:

Yie = Xt + 7Dit + v + Vi

Enter the dummy variable approach:

o We'd like to “control for" «; (ie, separate «; from the error term)

But what are these «;s?

Just individual-specific effects (intercepts, if you want)

So we should be able to just add a control variable for each person

We do this with dummy variables: /; = 1 for unit i, 0 for all j # /
N

Yie = XitB + 7Dj + Z 1[unit = i]; + vir
i=1
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Fixed effects estimator 2: De-meaning

Consider the following regression model with only individual (no time)
effects:
Yie = XitB + 7Dt + aj + Vi
We can get the same effect as adding dumm|es by “de-meaning” the data
e In general, define \/,t Vie — % t 1 Vie = Vir — Vi
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Fixed effects estimator 2: De-meaning

Consider the following regression model with only individual (no time)
effects:

Yie = XitB + Dt + o + iz

We can get the same effect as adding dumm|es by “de-meaning” the data

In general, define \/,t Vii — % t 1 Vie = Vir — V;

\N’,-t =Y, — Y;: Outcome minus averaged outcome

X = Xie — Xi: Covariate(s) minus averaged covariate(s)

Dit =Dy — D;: Treatment minus averaged treatment

&; = a;j — a; = 0: Individual effect minus averaged individual effect

Uy = vy — Dj: Error minus averaged error
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Fixed effects estimator 2: De-meaning

Consider the following regression model with only individual (no time)
effects:

Yie = XitB + Dt + o + iz
We can get the same effect as adding dumm|es by “de-meaning” the data
In general, define Vi = Vi — % t 1 Vie = Vir — V;

Yi: = Yz — Y;: Outcome minus averaged outcome

X = Xie — Xi: Covariate(s) minus averaged covariate(s)

Dit = Dj; — D;: Treatment minus averaged treatment
e d; = aj — &; = 0: Individual effect minus averaged individual effect
e Uy = vy — Dy Error minus averaged error

We can then express the “de-meaned” version of our model:

Yie = Xitﬁ + TDit + Ujt
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Fixed effects estimator 2: De-meaning

Consider the following regression model with only individual (no time)
effects:

Yie = XitB + Dt + o + iz

We can get the same effect as adding dummies by “de-meaning” the data

o In general, define Vjy = Vi — % Z;l Vi=Vi—V;

o Yi =Y — Y;: Outcome minus averaged outcome

o Xip = Xir — X;: Covariate(s) minus averaged covariate(s)
° Dit = Dj; — D;: Treatment minus averaged treatment

e d; = aj — &; = 0: Individual effect minus averaged individual effect
e Uy = vy — Dy Error minus averaged error
We can then express the “de-meaned” version of our model:

Yie = Xitﬁ + TDit + Ujt

— This gives you the same result as “controlling for" «;

PPHA 34600 Program Evaluation Lecture 12 7 /18



We can extend these estimators to a more complex model

Consider the regression model with both individual and time effects:

Yie = Xit8 + 7Djt + v + 0¢ + Vi
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We can extend these estimators to a more complex model

Consider the regression model with both individual and time effects:
Yie = Xyt + 7Dt + ai + 0t + Vit

The dummy variable method for controlling for a; and d; is:

N T
Yi = XppS+ mDjy + Z 1[unit = i]; + Z 1[time = t]; + vir
i=1 t=1
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We can extend these estimators to a more complex model
Consider the regression model with both individual and time effects:

Yie = Xyt + 7Dt + ai + 0t + Vit
The dummy variable method for controlling for a; and d; is:

N T
Yi = XppS+ mDjy + Z 1[unit = i]; + Z 1[time = t]; + vir
i=1 t=1

De-meaning is more annoying. Now we de-mean by both time and unit:
Define

} 1 T 1 N 1 N T
Vit:Vit—?;Vit—N;Vit‘i‘m;;Vit

=Vii—Vi=Vi+ Vg
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We can extend these estimators to a more complex model

Consider the regression model with both individual and time effects:
Yie = Xyt + 7Dt + ai + 0t + Vit

The dummy variable method for controlling for a; and d; is:

N T
Yi = XppS+ mDjy + Z 1[unit = i]; + Z 1[time = t]; + vir
i=1 t=1

De-meaning is more annoying. Now we de-mean by both time and unit:
Define

1 T 1 N 1 N T
\/it:\/it_?zvit_ﬁzvit‘i’mzzvit
t=1 =1 i=1 t=1
=Vii—Vi=Vi+ Vg

The model is now:

~ ~ ~
Yit = XitB + 7Dit + Vit
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Connecting FE to DD

Remember that we started with a simple DD model:

#DD — (Y (treat, post)—Y (treat, pre))—( Y (untreat, post)— Y (untreat, pre))
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Connecting FE to DD

Remember that we started with a simple DD model:
#DD — (Y (treat, post)—Y (treat, pre))—( Y (untreat, post)— Y (untreat, pre))
We can represent this as a regression as well:

Yit = a + 7(Treat x Post);: + 7y Treat; + § Post; + 5Xj: + €jt
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Connecting FE to DD

Remember that we started with a simple DD model:
#DD — (Y (treat, post)—Y (treat, pre))—( Y (untreat, post)— Y (untreat, pre))
We can represent this as a regression as well:

Yit = a + 7(Treat x Post);: + 7y Treat; + § Post; + 5Xj: + €jt
In slightly different notation:

Yit = a + 7Djs + vy Treat; + 0 Post: + Xt + €t
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Connecting FE to DD

Remember that we started with a simple DD model:
#DD — (Y (treat, post)—Y (treat, pre))—( Y (untreat, post)— Y (untreat, pre))

We can represent this as a regression as well:

Yit = a + 7(Treat x Post);: + 7y Treat; + § Post; + 5Xj: + €jt
In slightly different notation:

Yii = a+ 7Dj; + vy Treat; + § Post; + Xi: + €z
Now let's generalize:
Yit = 7Dit + i + ¢ + BXit + €ir

e «jis a (set of) individual fixed effects, which captures Treat;

e J; is a (set of) time fixed effects, which captures Post;
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Connecting FE to DD

Remember that we started with a simple DD model:
#DD — (Y (treat, post)—Y (treat, pre))—( Y (untreat, post)— Y (untreat, pre))
We can represent this as a regression as well:
Yit = a + 7(Treat x Post);: + 7y Treat; + § Post; + 5Xj: + €jt
In slightly different notation:
Yii = a+ 7Dj; + vy Treat; + § Post; + Xi: + €z
Now let's generalize:

Yit = 7Djt + o + 0t + BXit + €it

e «jis a (set of) individual fixed effects, which captures Treat;
e 0: is a (set of) time fixed effects, which captures Post;

— Note that we've lost a: this is now collinear with «;

— With just two units, «; is just 1[unit = i] and 1[unit = j]

— With just two time periods, «; is just 1[time = 0] and 1[time = 1]
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Extending DD to multiple treatment times

What happens if we have treated units who get treated at different times?

e Our new general formulation works!

Yit = 7Djt + aj + 0¢ + BXit + €ir
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Extending DD to multiple treatment times

What happens if we have treated units who get treated at different times?

e Our new general formulation works!

Yit = 7Djt + aj + 0¢ + BXit + €ir

e Dj; can turn from 0 to 1 at different times for different units
e (Or can stay 0 always for some units)

e (Or can stay 1 always for some units)
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Extending DD to multiple treatment times

What happens if we have treated units who get treated at different times?

e Our new general formulation works!

Yit = 7Djt + aj + 0¢ + BXit + €ir

e Dj; can turn from 0 to 1 at different times for different units
e (Or can stay 0 always for some units)

e (Or can stay 1 always for some units)

Important note: Running this specification gets you a weighted average
of several comparisons. This may not be exactly what you want!
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What does multiple-treatment-timing FE get us?
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What does multiple-treatment-timing FE get us?

A. Early Group vs. Untreated Group
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What does multiple-treatment-timing FE get us?

40

30
L

Units of y
20
|

B. Late Group vs. Untreated Group

S
- PRE(]) - BOSTQ)
o _ T~ e ) -~
Time %,

PPHA 34600

Program Evaluation

Lecture 12 11 /18



What does multiple-treatment-timing FE get us?

C. Early Group vs. Late Group, before t*
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What does multiple-treatment-timing FE get us?

D. Late Group vs. Early Group, after t*;

S
=

k

Vit

30
!

Units of y
20
|

10
!

MID(k,]) POST(])

t*k Time t*l

PPHA 34600 Program Evaluation Lecture 12 11 /18



What does multiple-treatment-timing FE get us?
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What does multiple-treatment-timing FE get us?
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What does multiple-treatment-timing FE get us?
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How do we do this right?

There are two main solutions to this problem:

@ Weighted balance test to make sure this isn't a problem

e Beyond the scope of this class

® Artificially “treat all units at the same time”
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The event study design

An event study is a more general FE design:

Our standard FE regression model:

Yie = 7Djt + aj + 0¢ + BXit + €t

e This imposes the constraint that 7 = 7 for all t

e (And all i, but that's a problem for a different day)
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The event study design

An event study is a more general FE design:

Our standard FE regression model:

Yie = 7Djt + aj + 0¢ + BXit + €t

e This imposes the constraint that 7 = 7 for all t
e (And all i, but that's a problem for a different day)
A more general model will allow differential effects over time:

R

Yii = ZTrD,- x 1[periods post treatment = r|; + aj + 6 + Xt + €it
r=0

1[periods post treatment = r|;; = 1 when we are r periods after
treatment, 0 otherwise
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The event study design

An event study is a more general FE design:

Our standard FE regression model:

Yie = 7Djt + aj + 0¢ + BXit + €t

e This imposes the constraint that 7 = 7 for all t
e (And all i, but that's a problem for a different day)
A more general model will allow differential effects over time:

R

Yii = ZTrD,- x 1[periods post treatment = r|; + aj + 6 + Xt + €it
r=0

1[periods post treatment = r|;; = 1 when we are r periods after
treatment, 0 otherwise

e The 7,s pick up the average treatment effect r periods after treatment
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The event study design

In the general version of this model, we include pre-treatment “effects”:

R
Yi: = Z 7,Dj x 1[periods to treatment = r|; + aj + ¢ + BXit + €it
r=—S

o (Note the number of pre-treatment periods, S, and the number of
post-treatment periods, R, need not be the same)
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The event study design

In the general version of this model, we include pre-treatment “effects”:

R
Yi: = Z 7,Dj x 1[periods to treatment = r|; + aj + ¢ + BXit + €it
r=—S

o (Note the number of pre-treatment periods, S, and the number of
post-treatment periods, R, need not be the same)

What's so great about this design?

e This “lines up” treatment at the same time for everyone

e We can still use fixed effects to soak up confounders

e We get a (partial) test of the identifying assumption
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The event study design

In the general version of this model, we include pre-treatment “effects”:

R
Yi: = Z 7,Dj x 1[periods to treatment = r|; + aj + ¢ + BXit + €it
r=—S

o (Note the number of pre-treatment periods, S, and the number of
post-treatment periods, R, need not be the same)

What's so great about this design?

e This “lines up” treatment at the same time for everyone

e We can still use fixed effects to soak up confounders

e We get a (partial) test of the identifying assumption
— We want pre-treatment 7's to be centered on 0 and not trending
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Event studies should always be shown graphically
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Cumulative effects

We're often interested in summing up effects over time:

This is a simple extension of per-period event study effects

And very powerful!

We can use this to understand if treatment moves things in time

Or happens and fades away

Or remains important over time
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Cumulative effects

We estimate cumulative effects with a distributed lag model:

S
Yie = Z TsDjt—s + i + 0t + BXir + €jt
s=0
where D; ;s is an indicator equal to the treatment status in period t — s
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Cumulative effects

We estimate cumulative effects with a distributed lag model:

S
Yie = Z TsDjt—s + i + 0t + BXir + €jt
s=0
where D; ;s is an indicator equal to the treatment status in period t — s

To gives the effect in the treatment period

71 gives the marginal effect of treatment 1 period later

Ty gives the marginal effect of treatment 2 periods later

Ts gives the marginal effect of treatment S periods later
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Cumulative effects

We estimate cumulative effects with a distributed lag model:

S
Yie = Z TsDjt—s + i + 0t + BXir + €jt
s=0
where D; ;s is an indicator equal to the treatment status in period t — s
e 7p gives the effect in the treatment period
e 71 gives the marginal effect of treatment 1 period later

e 75 gives the marginal effect of treatment 2 periods later

e 75 gives the marginal effect of treatment S periods later

— The cumulative effect g periods after treatment is:

q
Tq= Z Ts
s=0
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Recap

TL;DR:

@ We like the difference-in-differences approach a lot
® We discussed estimation with fixed effects

©® And covered the event study version
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