Lecture 12: Panel data II

PPHA 34600 Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

TL;DR:

- 1 We like the difference-in-differences approach a lot
- 2 We discussed estimation with fixed effects
- **3** And covered the event study version

An example: Cyclones and economic growth

Policy issue:

- Climate change is projected to increase the intensity and number of cyclones
- What do cyclones actually do to an economy?
- How long do these effects last?

Approach:

- Construct a (cool, sciency) model of every hurricane 1950-2008
- Combine this with data on economic growth around the world
- Nobody randomized hurricanes
- ...but conditional on location and time FE, they are arguably exogenous
- Use a distributed lag model to compute cumulative effects

What are we trying to learn?

These hurricane data are so cool

These hurricane data are so cool

Lecture 12 5 / 10

Estimating the effects of hurricanes on growth

The authors will run a version of:

$$Y_{it} = \sum_{s=0}^{S} \tau_s D_{i,t-s} + \alpha_i + \delta_t + \beta X_{it} + \varepsilon_{it}$$

where

 $Y_{it} = ln(GDP_{i,t}) - ln(GDP_{i,t-1})$ is the change in economic growth from t-1 to t

 $D_{i,t}$ is the hurricane (scaled by windspeed)

The unit of observation is the country-year

They then compute $T_q = \sum_{s=0}^q \tau_s$: the cumulative effects of a hurricane

Main result

Penn World Tables vs wind speed

PPHA 34600

Results in different locations

PPHA 34600

Program Evaluation

Lecture 12 8 / 10

Results for different sectors

How do these effects compare to other Bad Stuff?

Event Type	Effect on	Observed	In-Sample
	Income	After	Probability
Temperature increase $(+1^{\circ}C)^{*1}$	-1.0%	10 yrs	6.4%
$Civil war^2$	-3.0%	10 yrs	6.3%
Tax increase $(+1\% \text{ GDP})^{**3}$	-3.1%	4 yrs	$^{+}16.8\%$
1 standard deviation cyclone	-3.6%	$20 { m yrs}$	14.4%
Currency crisis ²	-4.0%	10 yrs	34.7%
Weakening executive constraints ²	-4.0%	10 yrs	3.7%
90th percentile cyclone	-7.4%	$20 { m yrs}$	5.8%
Banking crisis ²	-7.5%	10 yrs	15.7%
Financial crisis ⁴	-9.0%	2 yrs	$<\!0.1\%$
99th percentile cyclone	-14.9%	$20 { m yrs}$	0.6%

*Poor countries only. **USA only. [†]Number of quarters with any tax change.

¹Dell, Jones & Olken (AEJ: Macro, 2012), ²Cerra & Saxena (AER, 2008), ³Romer & Romer (AER, 2010), ⁴Reinhart & Rogoff (AER, 2009)