
Lecture 11:
Panel data I

PPHA 34600
Prof. Fiona Burlig

Harris School of Public Policy
University of Chicago



From last time: finishing IV

Zi is a valid instrument when the following are satisfied:

1 First stage: Cov(Zi ,Di ) 6= 0

2 Exclusion restriction: Cov(Zi , εi ) = 0

When we have these two conditions, we can...:

• Estimate causal effects

• ...but only for compliers!
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Further down the SOU rabbit hole

So far, we’ve focused on data across units. Now we’ll add time:

• Cross-sectional data:

• What we’ve been using

• Observations across units at a single point in time

• Time series data:

• Observations on a single unit over time

• Repeated cross-section data:

• Repeated sampling of different units over time

• Panel data:

• Multiple observations of the same unit over time
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Why is data over time useful?

We’ve spilled a lot of ink on the selection problem:

• To isolate the effect of Di , we need potential outcomes to be the
same among treated and untreated units

• With cross-sectional data, this is fundamentally tricky:

• People, firms, households, etc are different from one another in lots of
ways

• Getting a clean comparison means separating τ from all of these
differences

• Enter time series data:

• Fundamental insight:
Rather than comparing i to j , compare i in t to i in t − 1

• In this formulation, i serves as a control for itself

• i am much more similar to myself yesterday than i am to j
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Making time-series comparisons

Consider a setting with only one unit:

• We now denote our outcome as Yt(Dt) (no subscript: only one unit)

• As usual, we want to estimate τATE = E [Yt(Dt = 1)− Yt(Dt = 0)]

• But we can’t observe both Yt=1(Dt=1 = 1) and Yt=1(Dt=1 = 0)

→ Remember that fundamental problem of causal inference?

• Instead, we look for periods before and after treatment begins

• Suppose in t = 0, Dt=0 = 0, and in t = 1, Dt=1 = 1

• Then we can estimate:

τ̂TS = Yt=1 − Yt=0

• We can also extend this to many periods:

τ̂TS = Ȳt∈post − Ȳt∈pre
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Time series, visually

2

3

4

5

6
Y

0 50 100 150 200
Time

PPHA 34600 Program Evaluation Lecture 11 5 / 21



Time series, visually

2

3

4

5

6
Y

0 50 100 150 200
Time

PPHA 34600 Program Evaluation Lecture 11 5 / 21



Time series, visually

2

3

4

5

6
Y

0 50 100 150 200
Time

PPHA 34600 Program Evaluation Lecture 11 5 / 21



What’s good about the time series?

This time series approach compares unit i to itself over time:

• Consider a simple data-generating process:

Yit = βiXi

• In this model, we have time-invariant characteristics (Xi )

• Now add treatment:
Yit = τDit + βXi

where Dit = 0 in t = 0 and Dit = 1 in t = 1
• We want to separate treatment from the other characteristics

• Enter the difference estimator:

Yi ,t=1 − Yi ,t=0 = τ(Di ,t=1 − Di ,t=0) + β(Xi − Xi )

= τ(Di ,t=1 − Di ,t=0)

= τ(1− 0)

= τ
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We can pull the same trick with unobservables

• Consider a simple data-generating process:

Yit = βXi + γUi

• In this model, we have time-invariant observable characteristics (Xi )

• We also have time-invariant unobserved characteristics (Ui )

• Now add treatment:

Yit = τDit + βXi + γUi

where Dit = 0 in t = 0 and Dit = 1 in t = 1

• We want to separate treatment from the other characteristics

• Enter the difference estimator:
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Time series: identifying assumptions

In order for
τ̂TS = Yi ,t=1 − Yi ,t=0

to recover the true τ , we need an important assumption.

Consider the DGP:

Yit = τDit + βXi + γUi + δVit

where Vit is a set of observed and unobserved time-varying characteristics

In this case,

τ̂TS = Yi ,t=1 − Yi ,t=0 = τ + δ(Vi ,t=1 − Vi ,t=0)

In order for τ̂TS to equal τ , we need δ = 0 or Vi ,t=1 = Vi ,t=0(= Vi )

→ Any time-varying variables will create bias in τ̂TS

→ Also true for observables: we can’t separate Dit from coincident Vit
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Time series: identifying assumptions

Another way to think about this assumption:

• Yi would be unchanged in the absence of treatment

• To see this, we can write:

τ̂TS = Yi ,t=1(Dit = 1)− Yi ,t=0(Dit = 0)

= (Yi ,t=1(1)− Yi ,t=0(0)) + (Yi ,t=1(0)− Yi ,t=1(0))

= (Yi ,t=1(1)− Yi ,t=1(0)) + (Yi ,t=1(0)− Yi ,t=0(0))

≈ E [Yi ,t=1(1)− Yi ,t=1(0)|Di = 1] + E [Yi ,t=1(0)− Yi ,t=0(0)|Di = 1]

= τ + counterfactual trend

We have to assume that the counterfactual trend is zero
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Identifying assumptions, visually
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Validating the identifying assumption

We can never prove the identifying assumption:

• To do this, we would need to observe the counterfactual

• We can’t do this → no test (A)

• You could try to look at pre-treatment trends...

• ...but this is likely unsatsifying

Why does this matter?

• If the assumption is not satisfied, we will confound the trend with τ

• We cannot eliminate the trend with one time series

PPHA 34600 Program Evaluation Lecture 11 11 / 21



Validating the identifying assumption

We can never prove the identifying assumption:

• To do this, we would need to observe the counterfactual

• We can’t do this → no test (A)

• You could try to look at pre-treatment trends...

• ...but this is likely unsatsifying

Why does this matter?

• If the assumption is not satisfied, we will confound the trend with τ

• We cannot eliminate the trend with one time series

PPHA 34600 Program Evaluation Lecture 11 11 / 21



Validating the identifying assumption

We can never prove the identifying assumption:

• To do this, we would need to observe the counterfactual

• We can’t do this → no test (A)

• You could try to look at pre-treatment trends...

• ...but this is likely unsatsifying

Why does this matter?

• If the assumption is not satisfied, we will confound the trend with τ

• We cannot eliminate the trend with one time series

PPHA 34600 Program Evaluation Lecture 11 11 / 21



Two wrongs make a right?

Using panel data, we can combine two bad estimators into a good one:

• Our naive (cross-sectional) estimator:

• Compare i to j (static)

• Suffers from selection bias (i and j are systematically different)

• The time-series estimator:

• Compare i to itself over time

• Suffers from time-varying unobservables

• AKA non-zero trends

• We can combine these into the difference-in-differences estimator:

• Uses across-unit, within time, comparisons

• And within-unit, across time, comparisons
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Differences-in-differences (DD)

The problem with time series is the counterfactual trend:

• How would treated i have behaved in t = 1 without treatment?

• This is the missing counterfactual

• Using other individuals j , we can make a guess

The differences-in-differences estimator:

τ̂DD = τ̂TSDi=1 − τ̂TSDi=0

= (Yi ,t=1(Dit = 1)−Yi ,t=0(Dit = 0))−(Yj ,t=1(Djt = 0)−Yi ,t=0(Djt = 0))

= (Y (Di = 1, post)−Y (Di = 1, pre))−(Y (Di = 0, post)−Y (Di = 0, pre))

This compares treated to untreated units over time
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DD compares i to itself over time to j to itself over time

Consider a simple data-generating process:

Yit = βXi + δSt

• We have time-invariant characteristics (Xi ) and time-varying St

• Now add treatment (only for unit i):

Yit = τDit + βXi + δSt

Yjt = βXj + δSt

• Enter the DD estimator:

Yi ,t=1 − Yi ,t=0 = τ(Di ,t=1 − Di ,t=0) + β(Xi − Xi ) + δ(St=1 − St=0)

Yj ,t=1 − Yj ,t=0 = β(Xj − Xj) + δ(St=1 − St=0)

τ̂DD = (Yi ,t=1 − Yi ,t=0)− (Yj ,t=1 − Yj ,t=0)

= τ(Di ,t=1 − Di ,t=0) = τ
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In other notation...

The identifying assumption of the DD is “parallel trends”:

τ̂DD = (Yi,t=1(Dit = 1)− Yi,t=0(Dit = 0))− (Yj,t=1(Djt = 0)− Yj,t=0(Djt = 0))

= (Yi,t=1(1)− Yi,t=0(0))− (Yj,t=1(0)− Yj,t=0(0))

+(Yi,t=1(0)− Yi,t=1(0))

= (Yi,t=1(1)− Yi,t=1(0)) + [(Yi,t=1(0)− Yi,t=0(0))− (Yj,t=1(0)− Yj,t=0(0))]

≈ E [Yi,t=1(1)− Yi,t=1(0)|Di = 1] + E [Yi,t=1(0)− Yi,t−1(0)|Di = 1]

−E [Yj,t=1(0)− Yj,t=0(0)|Dj = 0]

= τ + counterfactual trend− untreated trend

Identifying assumption: untreated trend = counterfactual trend
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Implementing DD via regression

The simplest implementation of DD is just:

τ̂DD = (Ȳ (treat, post)−Ȳ (treat, pre))−(Ȳ (untreat, post)−Ȳ (untreat, pre))

We can implement this via the following regression:

Yi = α + τTreat × Postit + βTreati + δPostt + εit

To link these together, see:
Ȳ (treat, post) = α̂ + τ̂ + β̂ + δ̂
Ȳ (treat, pre) = α̂ + β̂
→Ȳ (treat, post)− Ȳ (treat, pre) = δ̂ + τ̂
and
Ȳ (untreat, post) = α̂ + δ̂
Ȳ (untreat, pre) = α̂
→Ȳ (untreat, post)− Ȳ (untreat, pre) = δ̂

Running this regression yields τ̂ = τ̂DD
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→Ȳ (treat, post)− Ȳ (treat, pre) = δ̂ + τ̂
and
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A handy table

We can implement DD via the following regression:

Yi = α + τTreat × Postit + βTreati + δPostt + εit

This gives us:

Pre Post Difference

Treated α + β + δ + τ α + β δ + τ
Untreated α + δ α δ

Difference β + τ β τ
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Adding covariates

We can add covariates:

Yi = α + τTreat × Postit + βTreati + δPostt + γXit + εit

We do this to:

1 Add precision: like the RCT, we can soak up variation

2 Control for important observables

• This mixes DD with SOO

PPHA 34600 Program Evaluation Lecture 11 20 / 21



Adding covariates

We can add covariates:

Yi = α + τTreat × Postit + βTreati + δPostt + γXit + εit

We do this to:

1 Add precision: like the RCT, we can soak up variation

2 Control for important observables

• This mixes DD with SOO

PPHA 34600 Program Evaluation Lecture 11 20 / 21



Recap

TL;DR:

1 We can leverage time series data for identification

2 This is more powerful when combined with cross-section

3 The resulting diff-in-diff is one of the better quasi-experiments
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