Lecture 11:
 Panel data I

PPHA 34600

Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

From last time: finishing IV

Z_{i} is a valid instrument when the following are satisfied:
(1) First stage: $\operatorname{Cov}\left(Z_{i}, D_{i}\right) \neq 0$
(2) Exclusion restriction: $\operatorname{Cov}\left(Z_{i}, \varepsilon_{i}\right)=0$

When we have these two conditions, we can...:

- Estimate causal effects
- ...but only for compliers!

Further down the SOU rabbit hole

So far, we've focused on data across units. Now we'll add time:

- Cross-sectional data:
- What we've been using
- Observations across units at a single point in time

Further down the SOU rabbit hole

So far, we've focused on data across units. Now we'll add time:

- Cross-sectional data:
- What we've been using
- Observations across units at a single point in time
- Time series data:
- Observations on a single unit over time

Further down the SOU rabbit hole

So far, we've focused on data across units. Now we'll add time:

- Cross-sectional data:
- What we've been using
- Observations across units at a single point in time
- Time series data:
- Observations on a single unit over time
- Repeated cross-section data:
- Repeated sampling of different units over time

Further down the SOU rabbit hole

So far, we've focused on data across units. Now we'll add time:

- Cross-sectional data:
- What we've been using
- Observations across units at a single point in time
- Time series data:
- Observations on a single unit over time
- Repeated cross-section data:
- Repeated sampling of different units over time
- Panel data:
- Multiple observations of the same unit over time

Why is data over time useful?

We've spilled a lot of ink on the selection problem:

- To isolate the effect of D_{i}, we need potential outcomes to be the same among treated and untreated units

Why is data over time useful?

We've spilled a lot of ink on the selection problem:

- To isolate the effect of D_{i}, we need potential outcomes to be the same among treated and untreated units
- With cross-sectional data, this is fundamentally tricky:
- People, firms, households, etc are different from one another in lots of ways
- Getting a clean comparison means separating τ from all of these differences

Why is data over time useful?

We've spilled a lot of ink on the selection problem:

- To isolate the effect of D_{i}, we need potential outcomes to be the same among treated and untreated units
- With cross-sectional data, this is fundamentally tricky:
- People, firms, households, etc are different from one another in lots of ways
- Getting a clean comparison means separating τ from all of these differences
- Enter time series data:
- Fundamental insight:

Rather than comparing i to j, compare i in t to i in $t-1$

- In this formulation, i serves as a control for itself
- i am much more similar to myself yesterday than i am to j

Making time-series comparisons

Consider a setting with only one unit:

- We now denote our outcome as $Y_{t}\left(D_{t}\right)$ (no subscript: only one unit)
- As usual, we want to estimate $\tau^{A T E}=E\left[Y_{t}\left(D_{t}=1\right)-Y_{t}\left(D_{t}=0\right)\right]$
- But we can't observe both $Y_{t=1}\left(D_{t=1}=1\right)$ and $Y_{t=1}\left(D_{t=1}=0\right)$
\rightarrow Remember that fundamental problem of causal inference?

Making time-series comparisons

Consider a setting with only one unit:

- We now denote our outcome as $Y_{t}\left(D_{t}\right)$ (no subscript: only one unit)
- As usual, we want to estimate $\tau^{A T E}=E\left[Y_{t}\left(D_{t}=1\right)-Y_{t}\left(D_{t}=0\right)\right]$
- But we can't observe both $Y_{t=1}\left(D_{t=1}=1\right)$ and $Y_{t=1}\left(D_{t=1}=0\right)$
\rightarrow Remember that fundamental problem of causal inference?
- Instead, we look for periods before and after treatment begins
- Suppose in $t=0, D_{t=0}=0$, and in $t=1, D_{t=1}=1$
- Then we can estimate:

$$
\hat{\tau}^{T S}=Y_{t=1}-Y_{t=0}
$$

Making time-series comparisons

Consider a setting with only one unit:

- We now denote our outcome as $Y_{t}\left(D_{t}\right)$ (no subscript: only one unit)
- As usual, we want to estimate $\tau^{A T E}=E\left[Y_{t}\left(D_{t}=1\right)-Y_{t}\left(D_{t}=0\right)\right]$
- But we can't observe both $Y_{t=1}\left(D_{t=1}=1\right)$ and $Y_{t=1}\left(D_{t=1}=0\right)$
\rightarrow Remember that fundamental problem of causal inference?
- Instead, we look for periods before and after treatment begins
- Suppose in $t=0, D_{t=0}=0$, and in $t=1, D_{t=1}=1$
- Then we can estimate:

$$
\hat{\tau}^{T S}=Y_{t=1}-Y_{t=0}
$$

- We can also extend this to many periods:

$$
\hat{\tau}^{T S}=\bar{Y}_{t \in \mathrm{post}}-\bar{Y}_{t \in \mathrm{pre}}
$$

Time series, visually

Time series, visually

Time series, visually

What's good about the time series?

This time series approach compares unit i to itself over time:

- Consider a simple data-generating process:

$$
Y_{i t}=\beta_{i} X_{i}
$$

- In this model, we have time-invariant characteristics $\left(X_{i}\right)$

What's good about the time series?

This time series approach compares unit i to itself over time:

- Consider a simple data-generating process:

$$
Y_{i t}=\beta_{i} X_{i}
$$

- In this model, we have time-invariant characteristics $\left(X_{i}\right)$
- Now add treatment:

$$
Y_{i t}=\tau D_{i t}+\beta X_{i}
$$

where $D_{i t}=0$ in $t=0$ and $D_{i t}=1$ in $t=1$

- We want to separate treatment from the other characteristics

What's good about the time series?

This time series approach compares unit i to itself over time:

- Consider a simple data-generating process:

$$
Y_{i t}=\beta_{i} X_{i}
$$

- In this model, we have time-invariant characteristics $\left(X_{i}\right)$
- Now add treatment:

$$
Y_{i t}=\tau D_{i t}+\beta X_{i}
$$

where $D_{i t}=0$ in $t=0$ and $D_{i t}=1$ in $t=1$

- We want to separate treatment from the other characteristics
- Enter the difference estimator:

$$
\begin{gathered}
Y_{i, t=1}-Y_{i, t=0}=\tau\left(D_{i, t=1}-D_{i, t=0}\right)+\beta\left(X_{i}-X_{i}\right) \\
=\tau\left(D_{i, t=1}-D_{i, t=0}\right) \\
=\tau(1-0) \\
=\tau
\end{gathered}
$$

We can pull the same trick with unobservables

- Consider a simple data-generating process:

$$
Y_{i t}=\beta X_{i}+\gamma U_{i}
$$

- In this model, we have time-invariant observable characteristics $\left(X_{i}\right)$
- We also have time-invariant unobserved characteristics $\left(U_{i}\right)$

We can pull the same trick with unobservables

- Consider a simple data-generating process:

$$
Y_{i t}=\beta X_{i}+\gamma U_{i}
$$

- In this model, we have time-invariant observable characteristics $\left(X_{i}\right)$
- We also have time-invariant unobserved characteristics $\left(U_{i}\right)$
- Now add treatment:

$$
Y_{i t}=\tau D_{i t}+\beta X_{i}+\gamma U_{i}
$$

where $D_{i t}=0$ in $t=0$ and $D_{i t}=1$ in $t=1$

- We want to separate treatment from the other characteristics

We can pull the same trick with unobservables

- Consider a simple data-generating process:

$$
Y_{i t}=\beta X_{i}+\gamma U_{i}
$$

- In this model, we have time-invariant observable characteristics $\left(X_{i}\right)$
- We also have time-invariant unobserved characteristics $\left(U_{i}\right)$
- Now add treatment:

$$
Y_{i t}=\tau D_{i t}+\beta X_{i}+\gamma U_{i}
$$

where $D_{i t}=0$ in $t=0$ and $D_{i t}=1$ in $t=1$

- We want to separate treatment from the other characteristics
- Enter the difference estimator:

$$
\begin{gathered}
Y_{i, t=1}-Y_{i, t=0}=\tau\left(D_{i, t=1}-D_{i, t=0}\right)+\beta\left(X_{i}-X_{i}\right)+\gamma\left(U_{i}-U_{i}\right) \\
=\tau\left(D_{i, t=1}-D_{i, t=0}\right) \\
=\tau
\end{gathered}
$$

Time series: identifying assumptions

In order for

$$
\hat{\tau}^{T S}=Y_{i, t=1}-Y_{i, t=0}
$$

to recover the true τ, we need an important assumption.
Consider the DGP:

$$
Y_{i t}=\tau D_{i t}+\beta X_{i}+\gamma U_{i}+\delta V_{i t}
$$

where $V_{i t}$ is a set of observed and unobserved time-varying characteristics

Time series: identifying assumptions

In order for

$$
\hat{\tau}^{T S}=Y_{i, t=1}-Y_{i, t=0}
$$

to recover the true τ, we need an important assumption.
Consider the DGP:

$$
Y_{i t}=\tau D_{i t}+\beta X_{i}+\gamma U_{i}+\delta V_{i t}
$$

where $V_{i t}$ is a set of observed and unobserved time-varying characteristics In this case,

$$
\hat{\tau}^{T S}=Y_{i, t=1}-Y_{i, t=0}=\tau+\delta\left(V_{i, t=1}-V_{i, t=0}\right)
$$

In order for $\hat{\tau}^{T S}$ to equal τ, we need $\delta=0$ or $V_{i, t=1}=V_{i, t=0}\left(=V_{i}\right)$

Time series: identifying assumptions

In order for

$$
\hat{\tau}^{T S}=Y_{i, t=1}-Y_{i, t=0}
$$

to recover the true τ, we need an important assumption.
Consider the DGP:

$$
Y_{i t}=\tau D_{i t}+\beta X_{i}+\gamma U_{i}+\delta V_{i t}
$$

where $V_{i t}$ is a set of observed and unobserved time-varying characteristics In this case,

$$
\hat{\tau}^{T S}=Y_{i, t=1}-Y_{i, t=0}=\tau+\delta\left(V_{i, t=1}-V_{i, t=0}\right)
$$

In order for $\hat{\tau}^{T S}$ to equal τ, we need $\delta=0$ or $V_{i, t=1}=V_{i, t=0}\left(=V_{i}\right)$
\rightarrow Any time-varying variables will create bias in $\hat{\tau}^{T S}$
\rightarrow Also true for observables: we can't separate $D_{i t}$ from coincident $V_{i t}$

Time series: identifying assumptions

Another way to think about this assumption:

- Y_{i} would be unchanged in the absence of treatment
- To see this, we can write:

$$
\hat{\tau}^{T S}=Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right)
$$

Time series: identifying assumptions

Another way to think about this assumption:

- Y_{i} would be unchanged in the absence of treatment
- To see this, we can write:

$$
\begin{gathered}
\hat{\tau}^{T S}=Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=0}(0)\right)+\left(Y_{i, t=1}(0)-Y_{i, t=1}(0)\right)
\end{gathered}
$$

Time series: identifying assumptions

Another way to think about this assumption:

- Y_{i} would be unchanged in the absence of treatment
- To see this, we can write:

$$
\begin{gathered}
\hat{\tau}^{T S}=Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=0}(0)\right)+\left(Y_{i, t=1}(0)-Y_{i, t=1}(0)\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=1}(0)\right)+\left(Y_{i, t=1}(0)-Y_{i, t=0}(0)\right)
\end{gathered}
$$

Time series: identifying assumptions

Another way to think about this assumption:

- Y_{i} would be unchanged in the absence of treatment
- To see this, we can write:

$$
\begin{gathered}
\hat{\tau}^{T S}=Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=0}(0)\right)+\left(Y_{i, t=1}(0)-Y_{i, t=1}(0)\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=1}(0)\right)+\left(Y_{i, t=1}(0)-Y_{i, t=0}(0)\right) \\
\approx E\left[Y_{i, t=1}(1)-Y_{i, t=1}(0) \mid D_{i}=1\right]+E\left[Y_{i, t=1}(0)-Y_{i, t=0}(0) \mid D_{i}=1\right]
\end{gathered}
$$

Time series: identifying assumptions

Another way to think about this assumption:

- Y_{i} would be unchanged in the absence of treatment
- To see this, we can write:

$$
\begin{gathered}
\hat{\tau}^{T S}=Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=0}(0)\right)+\left(Y_{i, t=1}(0)-Y_{i, t=1}(0)\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=1}(0)\right)+\left(Y_{i, t=1}(0)-Y_{i, t=0}(0)\right)
\end{gathered}
$$

$$
\approx E\left[Y_{i, t=1}(1)-Y_{i, t=1}(0) \mid D_{i}=1\right]+E\left[Y_{i, t=1}(0)-Y_{i, t=0}(0) \mid D_{i}=1\right]
$$

$=\tau+$ counterfactual trend
We have to assume that the counterfactual trend is zero

Identifying assumptions, visually

Validating the identifying assumption

We can never prove the identifying assumption:

- To do this, we would need to observe the counterfactual
- We can't do this \rightarrow no test (

Validating the identifying assumption

We can never prove the identifying assumption:

- To do this, we would need to observe the counterfactual
- We can't do this \rightarrow no test (
- You could try to look at pre-treatment trends...
- ...but this is likely unsatsifying

Validating the identifying assumption

We can never prove the identifying assumption:

- To do this, we would need to observe the counterfactual
- We can't do this \rightarrow no test (
- You could try to look at pre-treatment trends...
- ...but this is likely unsatsifying

Why does this matter?

- If the assumption is not satisfied, we will confound the trend with τ
- We cannot eliminate the trend with one time series

Two wrongs make a right?

Using panel data, we can combine two bad estimators into a good one:

- Our naive (cross-sectional) estimator:
- Compare i to j (static)
- Suffers from selection bias (i and j are systematically different)

Two wrongs make a right?

Using panel data, we can combine two bad estimators into a good one:

- Our naive (cross-sectional) estimator:
- Compare i to j (static)
- Suffers from selection bias (i and j are systematically different)
- The time-series estimator:
- Compare i to itself over time
- Suffers from time-varying unobservables
- AKA non-zero trends

Two wrongs make a right?

Using panel data, we can combine two bad estimators into a good one:

- Our naive (cross-sectional) estimator:
- Compare i to j (static)
- Suffers from selection bias (i and j are systematically different)
- The time-series estimator:
- Compare i to itself over time
- Suffers from time-varying unobservables
- AKA non-zero trends
- We can combine these into the difference-in-differences estimator:
- Uses across-unit, within time, comparisons
- And within-unit, across time, comparisons

Differences-in-differences (DD)

The problem with time series is the counterfactual trend:

- How would treated i have behaved in $t=1$ without treatment?
- This is the missing counterfactual
- Using other individuals j, we can make a guess

Differences-in-differences (DD)

The problem with time series is the counterfactual trend:

- How would treated i have behaved in $t=1$ without treatment?
- This is the missing counterfactual
- Using other individuals j, we can make a guess

The differences-in-differences estimator:

$$
\hat{\tau}^{D D}=\hat{\tau}_{D_{i}=1}^{T S}-\hat{\tau}_{D_{i}=0}^{T S}
$$

Differences-in-differences (DD)

The problem with time series is the counterfactual trend:

- How would treated i have behaved in $t=1$ without treatment?
- This is the missing counterfactual
- Using other individuals j, we can make a guess

The differences-in-differences estimator:

$$
\begin{gathered}
\hat{\tau}^{D D}=\hat{\tau}_{D_{i}=1}^{T S}-\hat{\tau}_{D_{i}=0}^{T S} \\
=\left(Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right)\right)-\left(Y_{j, t=1}\left(D_{j t}=0\right)-Y_{i, t=0}\left(D_{j t}=0\right)\right)
\end{gathered}
$$

Differences-in-differences (DD)

The problem with time series is the counterfactual trend:

- How would treated i have behaved in $t=1$ without treatment?
- This is the missing counterfactual
- Using other individuals j, we can make a guess

The differences-in-differences estimator:

$$
\hat{\tau}^{D D}=\hat{\tau}_{D_{i}=1}^{T S}-\hat{\tau}_{D_{i}=0}^{T S}
$$

$=\left(Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right)\right)-\left(Y_{j, t=1}\left(D_{j t}=0\right)-Y_{i, t=0}\left(D_{j t}=0\right)\right)$
$=\left(Y\left(D_{i}=1\right.\right.$, post $)-Y\left(D_{i}=1\right.$, pre $\left.)\right)-\left(Y\left(D_{i}=0\right.\right.$, post $)-Y\left(D_{i}=0\right.$, pre $\left.)\right)$

Differences-in-differences (DD)

The problem with time series is the counterfactual trend:

- How would treated i have behaved in $t=1$ without treatment?
- This is the missing counterfactual
- Using other individuals j, we can make a guess

The differences-in-differences estimator:

$$
\begin{gathered}
\hat{\tau}^{D D}=\hat{\tau}_{D_{i}=1}^{T S}-\hat{\tau}_{D_{i}=0}^{T S} \\
=\left(Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right)\right)-\left(Y_{j, t=1}\left(D_{j t}=0\right)-Y_{i, t=0}\left(D_{j t}=0\right)\right) \\
=\left(Y\left(D_{i}=1, p o s t\right)-Y\left(D_{i}=1, p r e\right)\right)-\left(Y\left(D_{i}=0, p o s t\right)-Y\left(D_{i}=0, p r e\right)\right)
\end{gathered}
$$

This compares treated to untreated units over time

DD compares i to itself over time to j to itself over time

Consider a simple data-generating process:

$$
Y_{i t}=\beta X_{i}+\delta S_{t}
$$

- We have time-invariant characteristics $\left(X_{i}\right)$ and time-varying S_{t}

DD compares i to itself over time to j to itself over time

Consider a simple data-generating process:

$$
Y_{i t}=\beta X_{i}+\delta S_{t}
$$

- We have time-invariant characteristics $\left(X_{i}\right)$ and time-varying S_{t}
- Now add treatment (only for unit i):

$$
\begin{gathered}
Y_{i t}=\tau D_{i t}+\beta X_{i}+\delta S_{t} \\
Y_{j t}=\beta X_{j}+\delta S_{t}
\end{gathered}
$$

DD compares i to itself over time to j to itself over time

Consider a simple data-generating process:

$$
Y_{i t}=\beta X_{i}+\delta S_{t}
$$

- We have time-invariant characteristics $\left(X_{i}\right)$ and time-varying S_{t}
- Now add treatment (only for unit i):

$$
\begin{gathered}
Y_{i t}=\tau D_{i t}+\beta X_{i}+\delta S_{t} \\
Y_{j t}=\beta X_{j}+\delta S_{t}
\end{gathered}
$$

- Enter the DD estimator:

$$
\begin{gathered}
Y_{i, t=1}-Y_{i, t=0}=\tau\left(D_{i, t=1}-D_{i, t=0}\right)+\beta\left(X_{i}-X_{i}\right)+\delta\left(S_{t=1}-S_{t=0}\right) \\
Y_{j, t=1}-Y_{j, t=0}=\beta\left(X_{j}-X_{j}\right)+\delta\left(S_{t=1}-S_{t=0}\right)
\end{gathered}
$$

DD compares i to itself over time to j to itself over time

Consider a simple data-generating process:

$$
Y_{i t}=\beta X_{i}+\delta S_{t}
$$

- We have time-invariant characteristics $\left(X_{i}\right)$ and time-varying S_{t}
- Now add treatment (only for unit i):

$$
\begin{gathered}
Y_{i t}=\tau D_{i t}+\beta X_{i}+\delta S_{t} \\
Y_{j t}=\beta X_{j}+\delta S_{t}
\end{gathered}
$$

- Enter the DD estimator:

$$
\begin{gathered}
Y_{i, t=1}-Y_{i, t=0}=\tau\left(D_{i, t=1}-D_{i, t=0}\right)+\beta\left(X_{i}-X_{i}\right)+\delta\left(S_{t=1}-S_{t=0}\right) \\
Y_{j, t=1}-Y_{j, t=0}=\beta\left(X_{j}-X_{j}\right)+\delta\left(S_{t=1}-S_{t=0}\right) \\
\hat{\tau}^{D D}=\left(Y_{i, t=1}-Y_{i, t=0}\right)-\left(Y_{j, t=1}-Y_{j, t=0}\right) \\
=\tau\left(D_{i, t=1}-D_{i, t=0}\right)=\tau
\end{gathered}
$$

DD, visually

DD, visually

DD, visually

In other notation...

The identifying assumption of the DD is "parallel trends":

$$
\hat{\tau}^{D D}=\left(Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right)\right)-\left(Y_{j, t=1}\left(D_{j t}=0\right)-Y_{j, t=0}\left(D_{j t}=0\right)\right)
$$

In other notation...

The identifying assumption of the DD is "parallel trends":

$$
\begin{gathered}
\hat{\tau}^{D D}=\left(Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right)\right)-\left(Y_{j, t=1}\left(D_{j t}=0\right)-Y_{j, t=0}\left(D_{j t}=0\right)\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=0}(0)\right)-\left(Y_{j, t=1}(0)-Y_{j, t=0}(0)\right)
\end{gathered}
$$

In other notation...

The identifying assumption of the DD is "parallel trends":

$$
\begin{gathered}
\hat{\tau}^{D D}=\left(Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right)\right)-\left(Y_{j, t=1}\left(D_{j t}=0\right)-Y_{j, t=0}\left(D_{j t}=0\right)\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=0}(0)\right)-\left(Y_{j, t=1}(0)-Y_{j, t=0}(0)\right) \\
+\left(Y_{i, t=1}(0)-Y_{i, t=1}(0)\right)
\end{gathered}
$$

In other notation...

The identifying assumption of the DD is "parallel trends":

$$
\begin{gathered}
\hat{\tau}^{D D}=\left(Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right)\right)-\left(Y_{j, t=1}\left(D_{j t}=0\right)-Y_{j, t=0}\left(D_{j t}=0\right)\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=0}(0)\right)-\left(Y_{j, t=1}(0)-Y_{j, t=0}(0)\right) \\
+\left(Y_{i, t=1}(0)-Y_{i, t=1}(0)\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=1}(0)\right)+\left[\left(Y_{i, t=1}(0)-Y_{i, t=0}(0)\right)-\left(Y_{j, t=1}(0)-Y_{j, t=0}(0)\right)\right]
\end{gathered}
$$

In other notation...

The identifying assumption of the DD is "parallel trends":

$$
\begin{gathered}
\hat{\tau}^{D D}=\left(Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right)\right)-\left(Y_{j, t=1}\left(D_{j t}=0\right)-Y_{j, t=0}\left(D_{j t}=0\right)\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=0}(0)\right)-\left(Y_{j, t=1}(0)-Y_{j, t=0}(0)\right) \\
+\left(Y_{i, t=1}(0)-Y_{i, t=1}(0)\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=1}(0)\right)+\left[\left(Y_{i, t=1}(0)-Y_{i, t=0}(0)\right)-\left(Y_{j, t=1}(0)-Y_{j, t=0}(0)\right)\right]
\end{gathered}
$$

$$
\approx E\left[Y_{i, t=1}(1)-Y_{i, t=1}(0) \mid D_{i}=1\right]+E\left[Y_{i, t=1}(0)-Y_{i, t-1}(0) \mid D_{i}=1\right]
$$

$$
-E\left[Y_{j, t=1}(0)-Y_{j, t=0}(0) \mid D_{j}=0\right]
$$

In other notation...

The identifying assumption of the DD is "parallel trends":

$$
\begin{gathered}
\hat{\tau}^{D D}=\left(Y_{i, t=1}\left(D_{i t}=1\right)-Y_{i, t=0}\left(D_{i t}=0\right)\right)-\left(Y_{j, t=1}\left(D_{j t}=0\right)-Y_{j, t=0}\left(D_{j t}=0\right)\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=0}(0)\right)-\left(Y_{j, t=1}(0)-Y_{j, t=0}(0)\right) \\
+\left(Y_{i, t=1}(0)-Y_{i, t=1}(0)\right) \\
=\left(Y_{i, t=1}(1)-Y_{i, t=1}(0)\right)+\left[\left(Y_{i, t=1}(0)-Y_{i, t=0}(0)\right)-\left(Y_{j, t=1}(0)-Y_{j, t=0}(0)\right)\right] \\
\approx E\left[Y_{i, t=1}(1)-Y_{i, t=1}(0) \mid D_{i}=1\right]+E\left[Y_{i, t=1}(0)-Y_{i, t-1}(0) \mid D_{i}=1\right] \\
-E\left[Y_{j, t=1}(0)-Y_{j, t=0}(0) \mid D_{j}=0\right]
\end{gathered}
$$

$=\tau+$ counterfactual trend - untreated trend
Identifying assumption: untreated trend $=$ counterfactual trend

Identifying assumptions, visually

Implementing DD via regression

The simplest implementation of DD is just:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$

Implementing DD via regression

The simplest implementation of DD is just:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$
We can implement this via the following regression:

$$
Y_{i}=\alpha+\tau \text { Treat } \times \text { Post }_{i t}+\beta \text { Treat }_{i}+\delta \text { Post }_{t}+\varepsilon_{i t}
$$

Implementing DD via regression

The simplest implementation of DD is just:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$
We can implement this via the following regression:

$$
Y_{i}=\alpha+\tau \text { Treat } \times \text { Post }_{i t}+\beta \text { Treat }_{i}+\delta \text { Post }_{t}+\varepsilon_{i t}
$$

To link these together, see:
$\bar{Y}($ treat, post $)=\hat{\alpha}+\hat{\tau}+\hat{\beta}+\hat{\delta}$
$\bar{Y}($ treat, pre $)=\hat{\alpha}+\hat{\beta}$
$\rightarrow \bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $)=\hat{\delta}+\hat{\tau}$

Implementing DD via regression

The simplest implementation of DD is just:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$
We can implement this via the following regression:

$$
Y_{i}=\alpha+\tau \text { Treat } \times \text { Post }_{i t}+\beta \text { Treat }_{i}+\delta \text { Post }_{t}+\varepsilon_{i t}
$$

To link these together, see:
$\bar{Y}($ treat, post $)=\hat{\alpha}+\hat{\tau}+\hat{\beta}+\hat{\delta}$
$\bar{Y}($ treat, pre $)=\hat{\alpha}+\hat{\beta}$
$\rightarrow \bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $)=\hat{\delta}+\hat{\tau}$
and
$\bar{Y}($ untreat, post $)=\hat{\alpha}+\hat{\delta}$
$\bar{Y}($ untreat, pre $)=\hat{\alpha}$
$\rightarrow \bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $)=\hat{\delta}$

Implementing DD via regression

The simplest implementation of DD is just:
$\hat{\tau}^{D D}=(\bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $))-(\bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $))$
We can implement this via the following regression:

$$
Y_{i}=\alpha+\tau \text { Treat } \times \text { Post }_{i t}+\beta \text { Treat }_{i}+\delta \text { Post }_{t}+\varepsilon_{i t}
$$

To link these together, see:
$\bar{Y}($ treat, post $)=\hat{\alpha}+\hat{\tau}+\hat{\beta}+\hat{\delta}$
$\bar{Y}($ treat, pre $)=\hat{\alpha}+\hat{\beta}$
$\rightarrow \bar{Y}($ treat, post $)-\bar{Y}($ treat, pre $)=\hat{\delta}+\hat{\tau}$
and
$\bar{Y}($ untreat, post $)=\hat{\alpha}+\hat{\delta}$
$\bar{Y}($ untreat, pre $)=\hat{\alpha}$
$\rightarrow \bar{Y}($ untreat, post $)-\bar{Y}($ untreat, pre $)=\hat{\delta}$
Running this regression yields $\hat{\tau}=\hat{\tau}^{D D}$

A handy table

We can implement DD via the following regression:

$$
Y_{i}=\alpha+\tau \text { Treat } \times \text { Post }_{i t}+\beta \text { Treat }_{i}+\delta \text { Post }_{t}+\varepsilon_{i t}
$$

A handy table

We can implement DD via the following regression:

$$
Y_{i}=\alpha+\tau \text { Treat } \times \text { Post }_{i t}+\beta \text { Treat }_{i}+\delta \text { Post }_{t}+\varepsilon_{i t}
$$

This gives us:

	Pre	Post	Difference
Treated	$\alpha+\beta+\delta+\tau$	$\alpha+\beta$	$\delta+\tau$
Untreated	$\alpha+\delta$	α	δ
Difference	$\beta+\tau$	β	τ

Adding covariates

We can add covariates:

$$
Y_{i}=\alpha+\tau \text { Treat } \times \text { Post }_{i t}+\beta \text { Treat }_{i}+\delta \text { Post }_{t}+\gamma X_{i t}+\varepsilon_{i t}
$$

Adding covariates

We can add covariates:

$$
Y_{i}=\alpha+\tau \text { Treat } \times \text { Post }_{i t}+\beta \text { Treat }_{i}+\delta \text { Post }_{t}+\gamma X_{i t}+\varepsilon_{i t}
$$

We do this to:
(1) Add precision: like the RCT, we can soak up variation
(2) Control for important observables

- This mixes DD with SOO

Recap

TL;DR:
(1) We can leverage time series data for identification
(2) This is more powerful when combined with cross-section
(3) The resulting diff-in-diff is one of the better quasi-experiments

