Lecture 19: Policy Lab Does rural electrification work? II

PPHA 34600 Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

From last time: sorry not sorry

From last time: rural electrification policy lab

Program Evaluation Lecture 19

From last time: rural electrification policy lab

What is the causal effect of rural electrification on economic development?

This is not totally straightforward to answer:

- Naive estimator: compare electrified to non-electrified places
- Why is this problematic?
- Electrified places might be...:
 - Growing faster (slower) than non-electrified places
 - More (less) politically connected
 - Have other infrastructure (roads, etc)
 - Be wealthier (less wealthy)
 - Etc
- $\rightarrow\,$ There are many forms of selection bias!

Dinkelman (2011) is a seminal study of rural electrification:

- Estimates effects in post-Apartheid South Africa
- Deals with identification with an instrumental variables approach
- IV: Land gradient
- **Finding:** Rural electrification causes large changes in female employment

We may find the geographic IV unsatisfying...

Today: two additional estimation approaches:

- 1 Lee, Miguel, Wolfram (2019): RCT
- **2** Burlig and Preonas (2016): **RD**

This is the first prominent econ paper to randomize RE:

Research question: What are the "economics of rural electrification"?

- $\rightarrow\,$ AKA, what are the costs and benefits of rural electrification?
- \rightarrow What are the effects of electrification on a variety of "benefits?"
- \rightarrow And how much does it cost to achieve these benefits?

Theoretical framework: the utility as a natural monopoly

Take-up, community coverage

Theoretical framework: the utility as a natural monopoly

Take-up, community coverage

Lee, Miguel, and Wolfram study rural electrification in Kenya:

- Kenya's grid is green(ish): lots of hydro and geothermal
- Lots to do: Installed MW to increase 10 fold by 2031
- Huge increase in electricity access in recent years: REA pushed to electrify public places...
- ... but households remained at low levels (only 32% electrified in 2014)

Lee, Miguel, and Wolfram study rural electrification in Kenya:

- Kenya's grid is green(ish): lots of hydro and geothermal
- Lots to do: Installed MW to increase 10 fold by 2031
- Huge increase in electricity access in recent years: REA pushed to electrify public places...
- ... but households remained at low levels (only 32% electrified in 2014)
- Households could pay for grid connections: **\$398** within 600m of a transformer

PPHA 34600

Program Evaluation

		Nation	wide county p	ercentiles
	Study region	25th	50th	75th
Total population	793,125	528,054	724,186	958,791
per square kilometer	375.4	39.5	183.2	332.9
% rural	85.7	71.6	79.5	84.4
% at school	44.7	37.0	42.4	45.2
% in school with secondary education	10.3	9.7	11.0	13.4
Total households	176,630	103,114	154,073	202,291
per square kilometer	83.6	7.9	44.3	78.7
% with high quality roof	59.7	49.2	78.5	88.2
% with high quality floor	27.7	20.6	29.7	40.0
% with high quality walls	32.2	20.3	28.0	41.7
% with piped water	6.3	6.9	14.2	30.6
Total public facilities	644	356	521	813
per capita (000s)	0.81	0.59	0.75	0.98
Electrification rates				
Rural (%)	2.3	1.5	3.1	5.3
Urban (%)	21.8	20.2	27.2	43.2
Public facilities (%)	84.1	79.9	88.1	92.6

PHA 34600	Program Evaluation

Lecture 19

11 / 46

LMW (2019): Data

	Unconnected	Connected	p-value of diff.
	(1)	(2)	(3)
Panel A: Household head (respondent) charac	cteristics		
Female (%)	62.9	58.6	0.22
Age (years)	52.3	55.8	< 0.01
Senior citizen (%)	27.5	32.6	0.11
Attended secondary schooling (%)	13.3	45.1	< 0.01
Married (%)	66.0	76.7	< 0.01
Not a farmer (%)	22.5	39.5	< 0.01
Employed (%)	36.1	47.0	< 0.01
Basic political awareness (%)	11.4	36.7	< 0.01
Has bank account (%)	18.3	60.9	< 0.01
Monthly earnings (USD)	16.9	50.6	< 0.01
Panel B: Household characteristics			
Number of members	5.2	5.3	0.76
Youth members (age ≤ 18)	3.0	2.6	0.01
High-quality walls (%)	16.0	80.0	< 0.01
Land (acres)	1.9	3.7	< 0.01
Distance to transformer (m)	356.5	350.9	0.58
Monthly (non-charcoal) energy (USD)	5.5	15.4	< 0.01
Panel C: Household assets			
Bednets	2.3	3.4	< 0.01
Sofa pieces	6.0	12.5	< 0.01
Chickens	7.0	14.3	< 0.01
Radios	0.35	0.62	< 0.01
Televisions	0.15	0.81	< 0.01
Sample size	2,289	215	

Program Evaluation

LMW (2019): Study design

Program Evaluation

LMW (2019): Study design

LMW (2019): Demand – Estimation

LMW randomly assigned subsidies:

• This means they can estimate the price elasticity simply

All they need to do is estimate:

$$Y_{ic} = \alpha + \tau_L D_c^L + \tau_M D_c^M + \tau_H D_c^H + \beta X_{ic} + \varepsilon_{ic}$$

where:

 Y_{ic} is take-up for household *i* in community *c* D_c^L, D_c^M , and D_c^H are treatment for the Low, Medium, and High subsidies X_{ic} are controls

 ε_{ic} is an error term

LMW (2019): Demand – Estimation

LMW randomly assigned subsidies:

• This means they can estimate the price elasticity simply

All they need to do is estimate:

$$Y_{ic} = \alpha + \tau_L D_c^L + \tau_M D_c^M + \tau_H D_c^H + \beta X_{ic} + \varepsilon_{ic}$$

where:

 Y_{ic} is take-up for household *i* in community *c* D_c^L, D_c^M , and D_c^H are treatment for the Low, Medium, and High subsidies X_{ic} are controls

 ε_{ic} is an error term

 $\rightarrow \tau_L, \tau_M, \tau_H$ are (treatment) effects on take-up at different subsidy levels

 $\rightarrow~\alpha$ captures take-up in the control group

LMW (2019): Demand – Results

LMW (2019): Demand – Results

LMW (2019): Estimation – Supply

We need to know the cost of a connection:

- The average total cost (admin data) is \$1,813 per connection
- Are there "economies of scale"?
- To estimate this:

 $ATC_{c} = \tau_{0} + \tau_{1}Connections_{c} + \tau_{2}Connections_{c}^{2} + \varepsilon_{c}$

LMW (2019): Estimation – Supply

We need to know the cost of a connection:

- The average total cost (admin data) is \$1,813 per connection
- Are there "economies of scale"?
- To estimate this:

$$ATC_{c} = \tau_{0} + \tau_{1}Connections_{c} + \tau_{2}Connections_{c}^{2} + \varepsilon_{c}$$

or

$$ATC_{c} = \underbrace{\frac{\tau_{0}}{Connections_{c}} + \tau_{1}}_{\text{fixed cost}} + \underbrace{\tau_{2}Connections_{c}}_{\text{marginal cost}} + \varepsilon_{c}$$

LMW (2019): Supply – Results

LMW (2019): Supply and demand – Results

LMW (2019): Supply and demand – Results

LMW (2019): Outcomes - Estimation

Following from the randomly-assigned subsidies:

• To get the ITT, they just estimate:

$$Y_{ic} = \alpha + \tau_H D_c^H + \beta X_{ic} + \varepsilon_{ic}$$

(no D_c^L or D_c^M because take-up was so low)

LMW (2019): Outcomes - Estimation

Following from the randomly-assigned subsidies:

• To get the ITT, they just estimate:

$$Y_{ic} = \alpha + \tau_H D_c^H + \beta X_{ic} + \varepsilon_{ic}$$

(no D_c^L or D_c^M because take-up was so low)

• To get the ATT, they estimate:

$$E_{ic} = \alpha + \gamma_L D_c^L + \gamma_M D_c^M + \gamma_H D_c^H + \beta X_{ic} + \varepsilon_{ic}$$

and

$$Y_{ic} = \alpha + \tau \hat{E}_{ic} + \beta X_{ic} + \varepsilon_{ic}$$

 \rightarrow They instrument to get from ITT to ATT

LMW (2019): Outcomes - Results

	Control	ITT	TOT	FDR q-val	
	(1)	(2)	(3)	(4)	
Panel A: Treatment effects on pre-specified outcomes					
P1. Grid connected (%)	5.6	89.7***	-	-	
	[23.0]	(1.4)			
P2. Monthly electricity spending (USD)	0.16	2.00***	2.20***	.001	
	[1.29]	(0.18)	(0.20)		
P3. Household employed or own business (%)	36.8	5.1	4.5	.416	
	[38.8]	(3.1)	(3.4)		
P4. Total hours worked last week	50.9	-2.8*	-3.6**	.167	
	[32.8]	(1.5)	(1.7)		
P5. Total asset value (USD)	888	109	110	.540	
	[851]	(108)	(120)		
P6. Ann. consumption of major food items (USD)	117	-3	-5	.548	
	[92]	(6)	(7)		
P7. Recent health symptoms index	0	-0.03	-0.05	.548	
	[1]	(0.06)	(0.07)		
P8. Normalized life satisfaction	0	0.12**	0.13*	.179	
	[1]	(0.05)	(0.07)		
P9. Political and social awareness index	0	-0.03	-0.02	.731	
	[1]	(0.05)	(0.05)		
P10. Average student test Z-score	0	-0.08	-0.10	.540	
	[0.99]	(0.10)	(0.10)		
Panel B: Mean treatment effects on grouped outcomes					
G1. Economic Index (P3 to P6 outcomes)	0	0.05	0.03	-	
	[1]	(0.08)	(0.08)		
G2. Non-Economic Index (P7 to P10 outcomes)	0	-0.01	-0.02	-	
	[1]	(0.05)	(0.07)		

LMW (2019): Summary

		Experi appr	mental oach	Alternative approach		_
	С	CS	NW	CS	NW	Key assumption(s)
Main estimates	658	147	-511	147	-511	
a) Income growth (experimental approach); Electricity consumption growth (alternative approach)	-	+139		- +182		Income growth of 3 percent per annum over 30 years (based on demand curves in figure 2, panel B); Electricity consumption growth of 10 percent per annum over 30 years (see table 4, column 2, row 3).
b) No credit constraints for grid connections	-	+301		-		Stated WTP without time constraints (see figure 5)
c) No transformer breakdowns	-	+33		+19		Reduce likelihood of transformer breakdowns from 5.4 to 0 percent (see appendix table B10).
d) No grid connection delays	-	+46		+26		Reduce waiting period from 188 to 0 days (see appendix figure A1).
e) No construction cost leakage	-140	-		-		Decrease total construction costs by 21.3 percent (see appendix table B8).
Ideal scenario	518	665	148	374	-144	

Third paper: Burlig and Preonas (2016)

What is the impact of rural electrification on economic development?

Context: Massive rural electrification program in India

- Home to world's largest unelectrified population
- Program targeted > 400,000 villages (\approx 2/3)

Research design: Regression discontinuity

- Population-based eligibility cutoff

Outcomes: Rich administrative data on development indicators

- Results from 3-5 years into the program

BP (2016): Context

"Rajiv Gandhi Grameen Vidyutikaran Yojana" electrification program

- Enacted in 2005; Goal: bring electricity access to all rural villages
- Approx. \$17.2 billion in federal funds budgeted for the program
- Covered over 400,000 villages in 27 states
 - > 100,000 unelectrified villages
 - > 300,000 "under-electrified" villages

Empirical strategy: regression discontinuity

We use RGGVY's first wave only

- 225 districts across 25 states
- Earliest wave of program \rightarrow more years of data
- Village eligibility cutoff: **300 people**

Regression discontinuity design

- Population-based eligibility cutoff (running variable set in 2001)
- We estimate an intent-to-treat effect
- Identifying assumptions:
 - continuity across threshold
 - population not manipulable

Population is smooth across the threshold

Population is smooth across the threshold

BP (2016): Estimation

$$Y_{vs}^{2011} = \alpha + \tau D_{vs} + \beta_1 (P_{vs} - 300) + \beta_2 (P_{vs} - 300) \cdot D_{vs} + Y_{vs}^{2001} + \eta_s + \varepsilon_{vs}$$

for 300 - h \le P_{vs} \le 300 + h,

where $w_{vs} \equiv \mathbf{1}[P_{vs} \geq 300]$

- Y_{vs}^t : outcome variable for village v in year t
- P_{vs} : population of village v in 2001
- D_{vs} : RD eligibility indicator for village v
 - η_s : state fixed effects
- ε_{vs} : error term (clustered by district)
 - *h*: RD bandwidth (h = 150)

Nighttime lights (2001)

Nighttime lights (2011)

Zoomed in

Village-level brightness

Outcomes come from several large administrative datasets

Dataset	Information
Primary Census Abstract (2001, 2011)	 population (running variable) # workers, by gender/type
Houselisting Primary Census Abstract (2011)	asset ownershiphousing characteristics
Village Directory (2001, 2011)	- village-level amenities
Socioeconomic and Caste Census (2001, 2011)	- poverty - household wealth
District Info. System on Education (2005-06 – 2014-15)	- school enrollment

RD on nighttime brightness – pre-program

RD on nighttime brightness – post-program

Nighttime brightness bandwidth sensitivity

Imbens and Kalyanaraman (2012) optimal bandwidth: 137-174

PPHA 34600

Program Evaluation

Lecture 19 37 / 46

Results withstand a variety of robustness checks

Our results are robust to:

- A placebo test
- A randomization inference check
- Alternative bandwidths
- Alternative functional forms
- Alternative measures of brightness
- Alternative standard errors
- Inclusion of controls
- Three falsification tests

RD results: agricultural employment

RD results: asset ownership

PPHA 34600

Program Evaluation

Lecture 19 40 / 46

RD results: household wealth

PPHA 34600

Scaling our results

- Convert from ITT to LATE
 - \approx 56–82% of RGGVY-eligible villages received treatment
 - \rightarrow Scaling factor ≈ 1.5

Scaling our results

- Convert from ITT to LATE
 - \approx 56–82% of RGGVY-eligible villages received treatment
 - \rightarrow Scaling factor ≈ 1.5
- Calibrate au = 0.15 to remote sensing estimates
 - village-wide electrification \approx 0.4-unit increase
 - per-household conversion \approx 0.2-unit increase
 - \rightarrow Scaling factor \approx 1.3 to 3

Applying a scaling factor of 3

We can reject changes \geq 0.26 of one standard deviation, for all development outcomes

Results: going beyond LATE

PPHA 34600

Program Evaluation

Lecture 19 44 / 46

Welfare

PPHA 34600

TL;DR:

- Lee, Miguel, Wolfram (2019) randomizes subsidies for household electricity connections
- 2 Burlig and Preonas (2016) use an RD to study electrification
- **3** Both find extremely limited benefits