Lecture 17: Policy Lab Does rural electrification work? I

PPHA 34600 Prof. Fiona Burlig

Harris School of Public Policy University of Chicago We looked at several ways to incorporate ML into CI

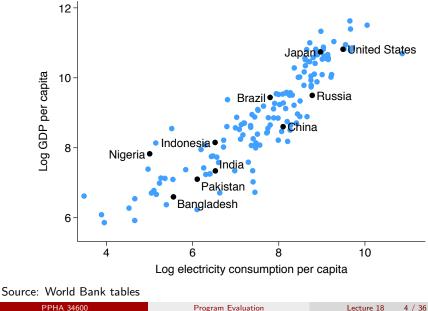
- 1 Generating (big) data
- 2 Exploring heterogeneity
- Improving research designs
 - ML works with SOO to handle functional form
 - And with SOU to aid in generating counterfactuals

The world at night

Electrification is a major policy goal

1.1 billion people still lack modern electricity access

Electrification is a major policy goal


1.1 billion people still lack modern electricity access

"Access to energy is essential to reduce poverty." — The World Bank

"By developing infrastructure that provides sustainable, reliable and affordable access to modern energy services, people, communities and countries can significantly improve their living standards and economic status."

- United Nations Development Programme

Wealthy countries use more electricity per capita

Program Evaluation Lecture 18

Research question

What is the causal effect of rural electrification on economic development?

This is not totally straightforward to answer:

• Naive estimator: compare electrified to non-electrified places

This is not totally straightforward to answer:

- Naive estimator: compare electrified to non-electrified places
- Why is this problematic?

This is not totally straightforward to answer:

- Naive estimator: compare electrified to non-electrified places
- Why is this problematic?
- Electrified places might be...:
 - Growing faster (slower) than non-electrified places
 - More (less) politically connected
 - Have other infrastructure (roads, etc)
 - Be wealthier (less wealthy)
 - Etc

This is not totally straightforward to answer:

- Naive estimator: compare electrified to non-electrified places
- Why is this problematic?
- Electrified places might be...:
 - Growing faster (slower) than non-electrified places
 - More (less) politically connected
 - Have other infrastructure (roads, etc)
 - Be wealthier (less wealthy)
 - Etc
- $\rightarrow\,$ There are many forms of selection bias!

What would we do if we could do anything?

- Some kind of random assignment to electricity
- ... but even this is not straightforward

What would we do if we could do anything?

- Some kind of random assignment to electricity
- ... but even this is not straightforward

- Do we want to randomly assign 24x7 power?
 - Or should actual power supply reflect existing conditions?

What would we do if we could do anything?

- Some kind of random assignment to electricity
- ... but even this is not straightforward

- Do we want to randomly assign 24x7 power?
 - Or should actual power supply reflect existing conditions?
- Do we care about effects on households? Villages? Towns? Counties?

What would we do if we could do anything?

- Some kind of random assignment to electricity
- ... but even this is not straightforward

- Do we want to randomly assign 24x7 power?
 - Or should actual power supply reflect existing conditions?
- Do we care about effects on households? Villages? Towns? Counties?
- Do we think about electrification in one location at a time?
 - Or do we consider general equilibrium?

What would we do if we could do anything?

- Some kind of random assignment to electricity
- ... but even this is not straightforward

- Do we want to randomly assign 24x7 power?
 - Or should actual power supply reflect existing conditions?
- Do we care about effects on households? Villages? Towns? Counties?
- Do we think about electrification in one location at a time?
 - Or do we consider general equilibrium?
- \rightarrow Actually ideal experiment probably requires multiple Earths
 - \rightarrow Or at least a really large sample!

If you thought the *ideal* experiment was tricky...

An additional practical wrinkle:

- Randomizing electricity access is impractical!
 - Like roads, electricity works on a network
 - Putting a random segment in the middle of nowhere would not work
 - Simple randomization is therefore not really going to work
 - Not to mention that it's going to be extremely hard to randomize at any meaningful scale

If you thought the *ideal* experiment was tricky...

An additional practical wrinkle:

- Randomizing electricity access is impractical!
 - Like roads, electricity works on a network
 - Putting a random segment in the middle of nowhere would not work
 - Simple randomization is therefore not really going to work
 - Not to mention that it's going to be extremely hard to randomize at any meaningful scale
- \rightarrow A quasi-experimental approach may be useful here

This is the most prominent early econ paper estimating effects of RE:

- **Research question:** What is the effect of electrification on "the ability of the poor to use their labor resources for market production?"
- $\rightarrow\,$ AKA, what is the effect of RE on employment?

There are lots of potential effects here:

- The nature of work at home may change
- So can work outside of the home

There are lots of potential effects here:

- The nature of work at home may change
- So can work outside of the home

The expected sign is ambiguous:

- New technology \rightarrow higher productivity in home activity...
- $\bullet\,$...but also more time in the day \rightarrow more time spent on market
- $\rightarrow\,$ Likely expect the market effects to dominate

There are lots of potential effects here:

- The nature of work at home may change
- So can work outside of the home

The expected sign is ambiguous:

- New technology \rightarrow higher productivity in home activity...
- $\bullet\,$...but also more time in the day \rightarrow more time spent on market
- $\rightarrow\,$ Likely expect the market effects to dominate
 - Can also lead to firm growth
 - Or more jobs in the household

There are lots of potential effects here:

- The nature of work at home may change
- So can work outside of the home

The expected sign is ambiguous:

- New technology \rightarrow higher productivity in home activity...
- $\bullet\,$...but also more time in the day \rightarrow more time spent on market
- $\rightarrow\,$ Likely expect the market effects to dominate
 - Can also lead to firm growth
 - Or more jobs in the household
 - Both in- and out-migration effects

- 1993: more than 2/3 of households didn't have electricity
 - 80% used wood burning for home production

- 1993: more than 2/3 of households didn't have electricity
 - 80% used wood burning for home production
- 1994: Elections \rightarrow new Black-led government ends Apartheid
 - ANC commits to universal electrification

- 1993: more than 2/3 of households didn't have electricity
 - 80% used wood burning for home production
- 1994: Elections \rightarrow new Black-led government ends Apartheid
 - ANC commits to universal electrification
- 2001: 1/4 of households were newly connected to the grid
 - 2x as many households electrified as the first five years of the REA (US)

- 1993: more than 2/3 of households didn't have electricity
 - 80% used wood burning for home production
- 1994: Elections \rightarrow new Black-led government ends Apartheid
 - ANC commits to universal electrification
- 2001: 1/4 of households were newly connected to the grid
 - 2x as many households electrified as the first five years of the REA (US)
- $\rightarrow\,$ Massive push towards rural electrification
- \rightarrow Opportunity for a natural experiment!

What did the electrification program look like?

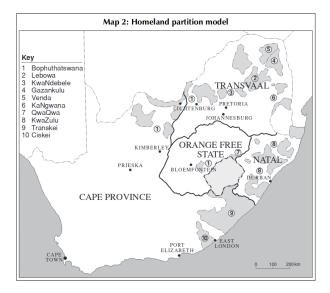
- National Electrification Programme (NEP): electrify 300k households
- Implemented through Eskom, the monopoly utility
- Cost \$1.4bn; connected 470,000 hhs in KZN (1993-2003)
- Connections powerful enough to run a few (small) appliances
- Places that were more expensive to electrify got power later

Post-Apartheid South Africa is an interesting place to study RE:

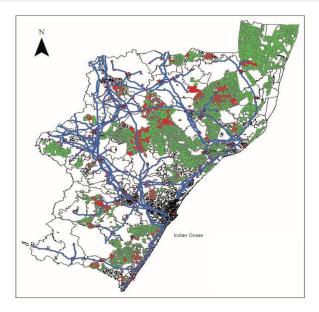
- A big switch from no power to power
- Very poor, marginalized groups getting access
- At the same time, many people getting access
- Important evidence from Sub-Saharan Africa

Post-Apartheid South Africa is an interesting place to study RE:

- A big switch from no power to power
- Very poor, marginalized groups getting access
- At the same time, many people getting access
- Important evidence from Sub-Saharan Africa
- Also a unique setting
- Nothing has ever really looked just like this context
- \rightarrow You should ask about external validity


Dinkelman (2011): Data

	Means	(standard dev	viation)	Differences in means (standard error)		
	Full sample (1)	Eskom project (2)	No project (3)	Columns 2–3 (4)	By gradient	
Covariates in 1996					No controls (5)	Controls (6)
Poverty rate	0.61 (0.19)	0.59 (0.17)	0.61 (0.20)	-0.024^{**} (0.01)	0.00 (0.00)	0.002 (0.00)
Female-headed HHs	0.55 (0.13)	0.55 (0.12)	0.55 (0.13)	0.00 (0.01)	0.005*** (0.00)	0.001 (0.00)
Adult sex ratio $(N_{females}/N_{males})$	1.48 (0.28)	1.41 (0.25)	1.49 (0.29)	-0.080*** (0.02)	0.011*** (0.00)	0.004** (0.00)
Indian, white adults $\times 10$	0.00 (0.01)	0.00 (0.00)	0.00 (0.01)	0.00 (0.00)	0.000 (0.00)	0.000 (0.00)
Kilometers to road	37.95 (24.57)	35.62 (24.18)	38.54 (24.64)	-2.917^{**} (1.44)	-0.201 (0.41)	-0.156 (0.18)
Kilometers to town	38.57 (18.12)	36.34 (15.34)	39.13 (18.72)	-2.790*** (1.06)	0.278 (0.41)	0.180 (0.13)
Men with high school	0.06 (0.05)	0.08 (0.05)	0.06 (0.05)	0.016*** (0.00)	-0.002*** (0.000)	-0.003** (0.00)
Women with high school	0.07 (0.05)	0.08 (0.05)	0.06 (0.05)	0.020*** (0.00)	-0.002^{***} (0.000)	0.000 (0.00)
Household density	22.05 (30.48)	32.56 (49.31)	19.41 (22.75)	13.152*** (1.76)	-0.523* (0.31)	-0.944*** (0.30)
Kilometers from grid	19.06 (13.32)	15.75 (10.20)	19.89 (13.88)	-4.139*** (0.77)	-0.235 (0.36)	0.029 (0.12)
Land gradient	10.10 (4.89)	9.12 (4.21)	10.35 (5.02)	-1.232*** (0.29)		
N communities	1,816	365	1,451	1,816	1,816	1,816


Dinkelman (2011): Data

		Means	Difference:		
	Year	Full sample (1)	Eskom project (2)	No project (3)	Column 2–3 (4)
Female employment rate	1996	0.07 (0.08)	0.09 (0.07)	0.06 (0.08)	0.021*** (0.00)
	2001	0.07 (0.07)	0.08 (0.07)	0.06 (0.07)	0.017*** (0.00)
Difference	Δ_t	0.000 (0.002)	-0.003 (0.005)	0.001 (0.00)	-0.004 (0.00)
Male employment rate	1996	0.14 (0.11)	0.16 (0.11)	0.13 (0.11)	0.031*** (0.01)
	2001	0.10 (0.09)	0.11 (0.09)	0.10 (0.09)	0.014** (0.01)
Difference	Δ_t	-0.04^{***} (0.00)	-0.050^{***} (0.01)	-0.033*** (0.00)	-0.017^{***} (0.01)
Ν		1,816	365	1,451	

Dinkelman (2011): Context

Dinkelman (2011): Data

Electrification was not randomly assigned in South Africa:

• We need a research design to estimate the causal effect of interest Ideally, we'd estimate:

$$Y_{id} = \alpha + \tau D_{id} + \varepsilon_{id}$$

where:

 Y_{id} is the outcome (female employment rate) in community *i* in district *d* D_{id} is an electrification indicator

 ε_{id} is an error term

 \rightarrow Without random assignment, we will get bias (why?)

Without random assignment, we could leverage time:

$$Y_{idt} = \tau D_{idt} + \alpha_{id} + \delta_t + \varepsilon_{idt}$$

 \rightarrow Note that Dinkelman writes this a bit weirdly

$$y_{jdt} = \alpha_0 + \alpha_1 t + \alpha_2 T_{jdt} + \mu_j + \delta_j t + \rho_d + \lambda_d t + \epsilon_{jdt},$$

Without random assignment, we could leverage time:

$$Y_{idt} = \tau D_{idt} + \alpha_{id} + \delta_t + \varepsilon_{idt}$$

 \rightarrow Note that Dinkelman writes this a bit weirdly

$$y_{jdt} = \alpha_0 + \alpha_1 t + \alpha_2 T_{jdt} + \mu_j + \delta_j t + \rho_d + \lambda_d t + \epsilon_{jdt},$$

- Why a time trend, not time FE?
- You can't have a district and a community FE?

Without random assignment, we could leverage time:

$$Y_{idt} = \tau D_{idt} + \alpha_{id} + \delta_t + \varepsilon_{idt}$$

 \rightarrow Note that Dinkelman writes this a bit weirdly

$$y_{jdt} = \alpha_0 + \alpha_1 t + \alpha_2 T_{jdt} + \mu_j + \delta_j t + \rho_d + \lambda_d t + \epsilon_{jdt},$$

- Why a time trend, not time FE?
- You can't have a district and a community FE?
- \rightarrow Even with time, we still have identification concerns (why?)

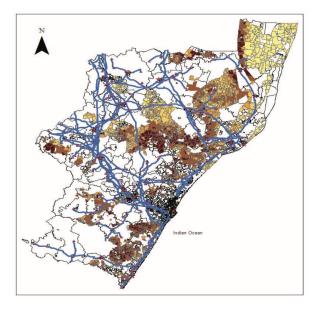
Dinkelman uses an IV approach to overcome the selection problem:

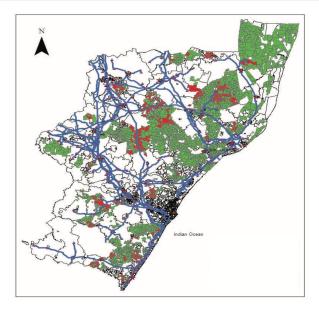
• We want to isolate the effect of electrification from everything else

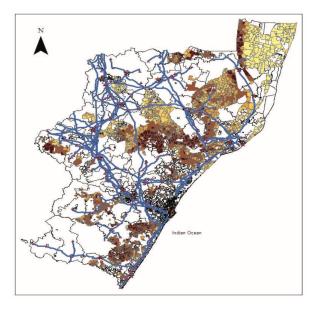
For the instrument to be valid, we need:

- **1** First stage: Our IV needs to be correlated with electrification
- **2** Exclusion restriction: Our IV needs to only move *Y* through electrification

Dinkelman uses an IV approach to overcome the selection problem:


• We want to isolate the effect of electrification from everything else


For the instrument to be valid, we need:


- **1** First stage: Our IV needs to be correlated with electrification
- Exclusion restriction: Our IV needs to only move Y through electrification

Instrument of choice: land gradient

- Steeper land is more expensive to electrify
- The first stage should be negative

With the instrument, we simply estimate:

$$D_{idt} = \theta Z_{idt} + \alpha_{id} + \delta_t + \varepsilon_{idt}$$
$$Y_{idt} = \tau \hat{D}_{idt} + \alpha_{id} + \delta_t + \varepsilon_{idt}$$

With the instrument, we simply estimate:

$$D_{idt} = \theta Z_{idt} + \alpha_{id} + \delta_t + \varepsilon_{idt}$$
$$Y_{idt} = \tau \hat{D}_{idt} + \alpha_{id} + \delta_t + \varepsilon_{idt}$$

Identifying assumption: Conditional on fixed effects, land gradient does not affect employment growth other than through electricity

Is this reasonable?

With the instrument, we simply estimate:

$$D_{idt} = \theta Z_{idt} + \alpha_{id} + \delta_t + \varepsilon_{idt}$$
$$Y_{idt} = \tau \hat{D}_{idt} + \alpha_{id} + \delta_t + \varepsilon_{idt}$$

Identifying assumption: Conditional on fixed effects, land gradient does not affect employment growth other than through electricity

• Is this reasonable?

LATEs: Estimates are the LATE for relatively flatter places

• How should this compare to ATE?

Dinkelman (2011): First stage

Dependent variable: Eskom project $= [1 \text{ or } 0]$	(1)	(2)	(3)	(4)
Gradient \times 10		-0.075^{**}	-0.078^{***}	-0.077***
	(0.040)	(0.034)	(0.027)	(0.027)
Kilometers to grid × 10		-0.040*	-0.012	-0.011
		(0.021)	(0.023)	(0.023)
Household density \times 10		0.017***		0.013**
		(0.004)	(0.006)	(0.006)
Poverty rate		0.023	0.019	0.017
		(0.069)	(0.070)	(0.069)
Female-headed HHs		0.393***		0.155
A della esse esti e		(0.120)	(0.107)	(0.107)
Adult sex ratio		-0.1/3*** (0.052)	-0.130*** (0.042)	-0.121*** (0.042)
Indian, white adults \times 10		-1.236***	· /	-1.105**
indian, white addits \times 10		(0.401)	(0.459)	(0.452)
Kilometers to road \times 10		0.003	-0.010	-0.010
Infolictus to road a ro		(0.009)	(0.010)	(0.010)
Kilometers to town \times 10		0.016	0.008	0.008
		(0.015)	(0.015)	(0.016)
Men with high school		-0.269	-0.185	-0.152
		(0.500)	(0.411)	(0.417)
Women with high school		1.046**	0.965**	0.984**
		(0.475)	(0.413)	(0.409)
Δ_i water access				0.012
				(0.048)
Δ_i toilet access				0.155
				(0.104)
District fixed effects Mean of outcome variable	N 0.20	N 0.20	Y 0.20	Y 0.20
N communities	1.816	1.816	1.816	1.816
R^2	0.01	0.07	0.18	0.18
F-statistic on gradient	4.20	4.87	8.34	8.26
Pr > F	0.04	0.03	0.00	0.00

PPHA 34600

Program Evaluation

Dinkelman (2011): Household Behavior

Outcome is Δ_t in:	OLS	OLS	IV	IV
	No controls	Controls	No controls	Controls
	(1)	(2)	(3)	(4)
(1) Lighting with electricity	0.251***	0.221***	0.577***	0.635***
Mean: 0.08	(0.032)	(0.031)	(0.188)	(0.227)
(2) Cooking with wood	-0.045^{***}	-0.039^{***}	-0.266	-0.275^{*}
Mean: -0.035	(0.012)	(0.012)	(0.179)	(0.147)
(3) Cooking with electricity	0.068^{***}	0.056^{***}	0.250**	0.228**
Mean: 0.037	(0.009)	(0.009)	(0.107)	(0.101)
(4) Water nearby	-0.029	0.005	-0.483*	-0.372
Mean: 0.007	(0.029)	(0.024)	(0.249)	(0.248)
(5) Flush toilet	0.003	0.008	0.018	0.067
Mean: 0.03	(0.006)	(0.005)	(0.069)	(0.068)

Dinkelman (2011): Female Employment

			4	Δ_i female emp	ployment ra	ite		
	0	OLS regressio	on coefficie	nts	IV regression coefficients			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Eskom project A. R. 95 percent C.I.	-0.004 (0.005)	$\begin{array}{c} -0.001 \\ (0.005) \end{array}$	0.000 (0.005)	$ \begin{array}{c} -0.001 \\ (0.005) \end{array} $	0.025 (0.045)	0.074 (0.060)	0.090* (0.055) [0.05; 0.3]	0.095* (0.055) [0.05; 0.3]
Poverty rate		0.029*** (0.011)	0.033*** (0.010)	0.031*** (0.010)		0.027** (0.012)	0.032** (0.013)	0.031** (0.013)
Female-headed HHs		0.042** (0.019)	0.051*** (0.019)	0.047** (0.020)		0.014 (0.031)	0.036 (0.026)	0.033 (0.026)
Adult sex ratio		0.019** (0.009)	0.017** (0.008)	0.020*** (0.007)		0.033** (0.014)	0.029** (0.012)	0.032*** (0.012)
Baseline controls?	Ν	Y	Υ	Y	Ν	Υ	Υ	Υ
District fixed effects?		N	Y	Y	Ν	Ν	Y	Y
Δ_i other services? N communities	N 1,816	N 1,816	N 1,816	Y 1,816	N 1,816	N 1,816	N 1,816	Y 1,816

Dinkelman (2011): Male Employment

	Δ_i male employment rate								
-	OLS regression coefficients				IV regression coefficients				
-	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Eskom project	-0.017**	-0.015***	-0.009	-0.010*	-0.063	0.069	0.033	0.035	
	(0.007)	(0.006)	(0.006)	(0.006)	(0.073)	(0.082)	(0.064)	(0.066)	
A. R. 95 percent C.I.							[-0.05; 0.25]	[-0.05; 0.25	
Poverty rate		0.062***	0.064***	0.063***		0.059***	0.064***	0.062***	
		(0.020)	(0.018)	(0.018)		(0.022)	(0.019)	(0.019)	
Female-headed HHs		0.217***	0.233***	0.227***		0.187***	0.227***	0.220***	
		(0.029)	(0.030)	(0.030)		(0.042)	(0.034)	(0.034)	
Adult sex ratio		0.018*	0.012	0.017		0.034*	0.018	0.023	
		(0.011)	(0.011)	(0.011)		(0.019)	(0.015)	(0.015)	
Baseline controls?	Ν	Y	Ŷ	Y	Ν	Y	Y	Y	
District fixed effects?	Ν	Ν	Υ	Υ	Ν	Ν	Y	Y	
Δ_i other services?	Ν	Ν	Ν	Y	Ν	N	Ν	Y	
N communities	1,816	1,816	1,816	1,816	1,816	1,816	1,816	1,816	

Dinkelman (2011): Panel Results

	Females		Ma	Males		Females		ales
	OLS	FE	OLS	FE	OLS	FE	OLS	FE
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Panel A. Empl	oyment [1/0]			Panel B. Us	ual weekly h	ours of work	
MD electrification	0.126**	0.128	0.090	0.134	6.646***	8.920	5.671**	13.090
rate	(0.058)	(0.149)	(0.077)	(0.164)	(1.771)	(6.634)	(2.597)	(12.947)
Trend	-0.010	0.046**	-0.051^{***}	-0.075^{***}	-0.407	-0.588	-0.322	-1.424
(1995–2001)	(0.012)	(0.020)	(0.012)	(0.022)	(0.491)	(0.872)	(0.620)	(1.701)
N	152	152	152	152	151	151	151	151
Mean of outcome	0.25	0.25	0.42	0.42	42.82	42.82	46.94	46.94
R^2	0.06	0.63	0.09	0.76	0.06	0.42	0.03	0.45
	Panel C. Log	hourly wage			Panel D. Lo	g monthly ea	rnings	
MD electrification rate	-0.148	-1.380	0.101	0.171	-0.070	-0.616	0.414**	1.107**
	(0.253)	(1.046)	(0.211)	(0.483)	(0.225)	(0.995)	(0.191)	(0.477)
Trend	-0.079^{***}	0.132	-0.027	0.077	-0.091**	-0.065	-0.047	-0.085
(1995–2001)	(0.030)	(0.137)	(0.032)	(0.063)	(0.037)	(0.131)	(0.033)	(0.063)
N Mean of outcome R^2	146 1.17 0.03	146 1.17 0.52	148 1.49 0.00	148 1.49 0.51	146 6.42 0.03	146 6.42 0.52	148 6.80 0.05	148 6.80 0.57

The "reproducibility crisis" is becoming a Thing:

- We have lots of results that don't replicate
- When we try to re-do experiments, we don't find the same results
- Famous example: power poses!

The "reproducibility crisis" is becoming a Thing:

- We have lots of results that don't replicate
- When we try to re-do experiments, we don't find the same results
- Famous example: power poses!
- \rightarrow A central culprit: **p-hacking**
 - Researchers get jobs based on statistically significant effects
 - This generates incentives to find them
 - We get a lot of results with 0.051
 - ... a lot more than 20%!
 - Adding controls, etc to get "stars" is common

One way to generate "stars" is to run a lot of regressions:

- With a 95% confidence threshold, you will find stars 5% of the time, even if your null hypothesis is true
- So if you run a lot of regressions, you are bound to find some with stars
- If you then only report the ones with stars, we have a problem
- (If you report all of them, we're fine!)

One way to generate "stars" is to run a lot of regressions:

- With a 95% confidence threshold, you will find stars 5% of the time, even if your null hypothesis is true
- So if you run a lot of regressions, you are bound to find some with stars
- If you then only report the ones with stars, we have a problem
- (If you report all of them, we're fine!)
- $\rightarrow\,$ If we do this, we're killing the usefulness of stars
- \rightarrow And generating results that won't replicate

Addressing multiple testing

There are a few fixes to this issue:

- Pre-specification
 - Before you look at data, write down exactly what you're going to run
 - And make this public
 - So I can tell how many tests you actually did!
 - $\rightarrow\,$ To make this credible, need to prove you couldn't see data first

Addressing multiple testing

There are a few fixes to this issue:

- Pre-specification
 - Before you look at data, write down exactly what you're going to run
 - And make this public
 - So I can tell how many tests you actually did!
 - $\rightarrow\,$ To make this credible, need to prove you couldn't see data first
- Ø Multiple correction adjustment
 - Adjust for the fact that you ran many tests
 - Essentially involves inflating your p-values
 - Many ways to do this: FWER, FDR, Bonferroni
 - $\rightarrow\,$ This is best paired with prespecification

Dinkelman (2011): Spillovers?

Outcome: Δ_t female employment	OLS (1)	IV (2)	N communities (3)
Panel A.			
Full sample	-0.001 (0.005)	0.095* (0.055)	1,816
Panel B.			
Excluding nonproject areas < 1 km from project site	-0.004 (0.006)	0.076 (0.057)	1,205
Panel C.			
Excluding nonproject areas < 5 km from project site	-0.003 (0.008)	0.069 (0.077)	840

Dinkelman (2011): Migration

_	Δ_t log population		Δ_t females wit	h high school	Δ_t males with high school	
-	OLS	IV	OLS	IV	OLS	IV
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A.						
Eskom project	0.171***	3.897***	0.001	0.129*	0.001	0.076
	(0.045)	(1.427)	(0.005)	(0.058)	(0.003)	(0.050)
Ν	1,816	1,816	1,816	1,816	1,816	1,816
	$\Delta_t \log$ non–in-migrant population		Δ_t female employment excluding in-migrants		Δ_t male employment excluding in-migrants	
Panel B.						
Eskom project	0.181***	4.349***	0.000	0.116*	-0.008	0.086
	(0.048)	(1.586)	(0.005)	(0.069)	(0.005)	(0.069)
Ν	1,816	1,816	1,816	1,816	1,816	1,816

TL;DR:

- Dinkelman (2011) is a seminal study of the effects of rural electrification
- **2** Finds that electrification dramatically increases female employment
- **3** Uses an IV strategy based on land gradient (credible?)