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From last time: fuzzy regression discontinuity

As usual, we'd like to run:
Yi=a+7D; + ¢;

The regression discontinuity:

e Suppose D; is determined by whether or not X; lies above a cutoff, ¢
e ldea: Having X; just above or just below c is as good as random...
e ... And there is a discontinuous change in D; as a result of crossing ¢

— We can compare Y; for units with X; just above ¢ to Y; for units with
X; just below ¢

e With incomplete changes in D; from X; < c to X; > c:
D,':Oz—l-’y].[X,'ZC]—l-f(Xi)—l-e’f,' forc—h< X;<c+h

Yi=a+ 71D+ f(X;)+eiforc—h<X;<c+h
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And now for something completely different...
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How big is Big?

A computer scientist might say:

e “Too big to fit on your computer”

An economist might say:

e "l dunno, 15 GB?”

— All of this is a bit fuzzy
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Big data are getting bigger every day
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Thinking outside of the box to get new data

The era of Big Data isn’t just good because of small standard errors:

e New data collection methods present opportunities
e We can study previously unanswerable questions

e Sometimes this requires getting a bit creative
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Thinking outside of the box to get new data
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Thinking outside of the box to get new data
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Thinking outside of the box to get new data
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With Big Data come big responsibility

(Especially) with Big Data, we have to be careful:

e Just because a dataset is large doesn’'t mean it's unbiased
e Large data can also have errors

e And come with additional concerns too (privacy, etc)
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With Big Data come big responsibility

(Especially) with Big Data, we have to be careful:

e Just because a dataset is large doesn’'t mean it's unbiased
e Large data can also have errors
e And come with additional concerns too (privacy, etc)

— It’s important to understand what we’re using
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With Big Data come big responsibility

(Especially) with Big Data, we have to be careful:

e Just because a dataset is large doesn’'t mean it's unbiased
e Large data can also have errors
e And come with additional concerns too (privacy, etc)

— It’s important to understand what we’re using

— (The following slides owe credit to Tamma Carleton)
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With Big Data come big responsibility

We typically interact with three types of data:

® Raw, out of the source

® Processed “in house”

© Processed “out of the house”

— All of these data can be used as Y, D, or X (or even 2)

— Each has its own pros and cons
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Raw data

Major pros of raw data:

e We know what we're dealing with
o We get a fighting chance to understand measurement error and bias

Major cons of raw data:

e Raw data are often not exactly what we want

e We have to be careful when we use them as a proxy
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Processed in house

Major pros of home-grown data:

e We know what we're dealing with
o We get a fighting chance to understand measurement error and bias

Major cons of home-grown data:

e This takes a lot of time and effort

e And we don't always have the right toolkit
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Processed in house
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Processed out of the house

Major pros of outsourced data:

e We leverage external expertise
e We potentially have less measurement error than the in-house version

e This is a lot less work than the

Major cons of outsourced data:

e We don't know exactly what we're measuring

e We can't look “under the hood” to uncover bias
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Processed out of the house
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Big Data wrap-up

Just like with small data, you need to know what you've got:

e Big Data allow for new possibilities
e But require additional processing tools and time

e A careful combination of in-house and out-of-house work can yield
benefits
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Estimation vs. prediction

This class has been about asking:

— What is the causal effect of D on Y?

— Aka, in
Yi=a+71D; +¢;

what is 77

e Focus is on unbiasedness
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Estimation vs. prediction

This class has been about asking:

— What is the causal effect of D on Y?

— Aka, in
Yi=a+71D; +¢;

what is 77
e Focus is on unbiasedness

Machine learning instead asks:

— What is the best guess of some outcome?
— What is ¥7?

e Want to consider a bias-variance tradeoff
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Estimation vs. prediction

An estimation problem:

“What is the causal effect of my rain dance on rainfall today?”

— Estimation problem: rain dances (maybe) affect rainfall
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Estimation vs. prediction

An estimation problem:

“What is the causal effect of my rain dance on rainfall today?”

— Estimation problem: rain dances (maybe) affect rainfall

A prediction problem:

“Do | need an umbrella today?”

— Prediction problem: rainfall doesn’'t depend on umbrellas
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Basics of machine learning

Machine learning is just methods trying to generate predicions:

e Given a dataset with outcome Y and covariates X, what function
f(X) best predicts Y?

e Note the difference between this and causal inference!
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Predicting 14
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Predicting Y without overfitting

We want to come up with a good estimate of Y.
... But we need to watch out for overfitting!
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Predicting Y without overfitting

We want to come up with a good estimate of Y.
... But we need to watch out for overfitting!

Machine learning typically uses three steps:

® In-sample prediction:
e Use an algorithm to generate the best in-sample prediction

e Many ways to do this, but imagine running thousands of OLS
regressions
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Predicting Y without overfitting

We want to come up with a good estimate of Y.
... But we need to watch out for overfitting!

Machine learning typically uses three steps:

® In-sample prediction:
e Use an algorithm to generate the best in-sample prediction

e Many ways to do this, but imagine running thousands of OLS
regressions

® Cross-validation:
o Instead of using the whole sample for step (1)...
e Split the sample into pieces...
e Do step (1) on one part, and predict Y on the other part
o Record how well the model fits (eg Y — Y)
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Predicting Y without overfitting

We want to come up with a good estimate of Y.
... But we need to watch out for overfitting!

Machine learning typically uses three steps:

® In-sample prediction:
e Use an algorithm to generate the best in-sample prediction

e Many ways to do this, but imagine running thousands of OLS
regressions

® Cross-validation:
o Instead of using the whole sample for step (1)...
e Split the sample into pieces...
e Do step (1) on one part, and predict Y on the other part
o Record how well the model fits (eg ¥ — V)

©® Repeat:
e Do this several times over different sample splits
e Pick the final model that does best
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The in-sample prediction step

It's worth unpacking this a bit further:

e Goal: Produce the best guess at 7(X)

This typically involves being very flexible: interactions between Xs

We know we want to avoid over-fitting

Just running a ton of OLS regressions is a slow way to do this
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The in-sample prediction step

Funetion class F (and its parametrization)

Regularizer R(f)

Global /parametric predictors
Linear 'x (and generalizations)

Subset selection|[d]]o = ¥ k1 1520
LASSO ||Ally = Y415,
Ridge [|4]],* = k.57

Elastic net a||][; + (1 - a) ||8]|2*

Local /nonparametric predictors
Decision /regression trees

Random forest (linear combination of
trees)

Nearest neighbors

Kernel regression

Depth, number of nodes/leaves, minimal leaf
size, information gain at splits

Number of trees, number of variables used
in each tree, size of bootstrap sample,
complexity of trees (see above)

Number of neighbors

Kernel bandwidth

Mixed predictors
Deep learning, neural nets, convolutional
neural networks

Splines

Number of levels, number of neurons per
level, connectivity between neurons

Number of knots, order

Combined predictors
Bagging: unweighted average of predictors
from bootstrap draws
Boosting: linear combination of
predictions of residual
Ensemble: weighted combination of

different predictors

Number of draws, size of bootstrap samples
(and individual regularization parameters)
Learning rate, number of iterations (and
individual regularization parameters)
Ensemble weights (and individual
regularization parameters)
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A few cautions with ML models

ML is a great tool, but we have to be careful!

e Do NOT try to interpret the function! Z 2 2
e The ML model gives you Y...but not 7!

e We're not recovering causal effects

And we don't get standard errors

And the models are typically unstable
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Using machine learning for causal inference

Machine learning is not designed for 7:

e We can't directly use ML for what we want to estimate

e But does this mean ML is useless for us?
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Using machine learning for causal inference

Machine learning is not designed for 7:

e We can't directly use ML for what we want to estimate
e But does this mean ML is useless for us?

— No.

— We just need to be a little bit creative!
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Using machine learning for causal inference

There are three main ways to use ML for causal inference:

® Data generation
® Heterogeneity analysis

© Estimating 7
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ML for data generation
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ML for heterogeneity analysis

We often want to find heterogeneous effects:

The FPCI gets in our way for this too

We need to compare treated vs. untreated units...

. conditional on X; = x

But there might be many X;

And they might even be continuous
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ML for heterogeneity analysis

We often want to find heterogeneous effects:

The FPCI gets in our way for this too

We need to compare treated vs. untreated units...

. conditional on X; = x

But there might be many X;

And they might even be continuous

— Which X; have interesting heterogeneity in 7;(X;)?
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ML for heterogeneity analysis

Reframe this into a prediction question:

What is predicted \A/,-(X,-)?
That is, which Xjs give you different Y:?

For this to be the same as heterogeneity in 7;(X;)...

e ... we need random assignment to treatment

Under random assignment, there is a 1:1 mapping between Y: and %
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ML for heterogeneity analysis

The most common approach is the causal tree:

@ Select a training and a test sample
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ML for heterogeneity analysis

The most common approach is the causal tree:

@ Select a training and a test sample

® Training sample only: Predict Y for all units
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ML for heterogeneity analysis

The most common approach is the causal tree:

@ Select a training and a test sample
® Training sample only: Predict Y for all units
© Split into X; groups, looking for the largest difference in V;

PPHA 34600 Program Evaluation Lecture 16 31/52



ML for heterogeneity analysis

The most common approach is the causal tree:

@ Select a training and a test sample

® Training sample only: Predict Y for all units

© Split into X; groups, looking for the largest difference in V;

O Split into X; subgroups, looking for the largest difference in \A/,
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ML for heterogeneity analysis

The most common approach is the causal tree:

@ Select a training and a test sample

® Training sample only: Predict Y for all units

© Split into X; groups, looking for the largest difference in V;

O Split into X; subgroups, looking for the largest difference in \A/,

@ Split into X; subsubgroups, looking for the largest difference in Y;
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ML for heterogeneity analysis

The most common approach is the causal tree:

@ Select a training and a test sample

® Training sample only: Predict Y for all units

© Split into X; groups, looking for the largest difference in V;

O Split into X; subgroups, looking for the largest difference in \A/,

@ Split into X; subsubgroups, looking for the largest difference in Y;

@ Stop splitting based on some rule
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ML for heterogeneity analysis

The most common approach is the causal tree:

@ Select a training and a test sample

® Training sample only: Predict Y for all units

© Split into X; groups, looking for the largest difference in V;

O Split into X; subgroups, looking for the largest difference in \A/,

@ Split into X; subsubgroups, looking for the largest difference in Y;
@ Stop splitting based on some rule

@ Testing sample only: using the identified groups, estimate 7
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ML for heterogeneity analysis

The most common approach is the causal tree:

@ Select a training and a test sample

® Training sample only: Predict Y for all units

© Split into X; groups, looking for the largest difference in V;

O Split into X; subgroups, looking for the largest difference in \A/,

@ Split into X; subsubgroups, looking for the largest difference in Y;
@ Stop splitting based on some rule

@ Testing sample only: using the identified groups, estimate 7

— Repeat with different training samples to construct a causal forest
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Causal trees
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ML for causal inference

Now we're really pushing the frontier:

® ML with selection on observables
® ML with selection on unobservables

— We need to reframe our questions as prediction problems
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ML with selection on observables

Consider an underlying model:
Yi=a+ 71D+ f(X;) +¢;

where E[¢|D, X] = 0: Conditional on X, D is as good as random
e But which Xs matter?
e And what is the right f(X)?

e We can use ML to help us figure this out
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ML with selection on observables

Consider an underlying model:
Yi=a+ 71D+ f(X;) +¢;
where E[¢|D, X] = 0: Conditional on X, D is as good as random
e But which Xs matter?
e And what is the right f(X)?

e We can use ML to help us figure this out

— Simple guess: simply predict Y based on D and X; interpret
coefficient on D as 7
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ML with selection on observables
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ML with selection on observables

The simple guess doesn't work!

e The overall best fit ignores the SOO assumption
e Some X; that are important for D; may be left out
— ML will choose X; that are important for Y;

— These aren’t necessarily the same as those that matter for D;
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ML with selection on observables

The simple guess doesn't work!

e The overall best fit ignores the SOO assumption
e Some X; that are important for D; may be left out
— ML will choose X; that are important for Y;

— These aren’t necessarily the same as those that matter for D;

We can do better!

@ Predict Y as a function of X
@ Also predict D as a function of X
© Estimate treatment effects using both sets of covariates

— This only works when you do steps (1) and (2) with LASSO

PPHA 34600 Program Evaluation Lecture 16 36 / 52



ML with selection on observables
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ML with selection on observables

The most up-to-date approach is:

® Predict Y as a function of X
® Predict D as a function of X
©® Compute residuals: YR =Y — Yand DR=D-D

® Recover T by regressing:

YR =a+7DR +¢

— You can do steps (1) and (2) with any ML method

— Note that this approach still needs the SOO assumptions
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ML with selection on observables
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ML with selection on unobservables

Just like with SOO, ML can be useful to pick covariates:

e ML helps pick X; when we don't need them for identification

e This works for RCTs, DD, IV, etc with exogenous covariates only
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ML with selection on unobservables

Just like with SOO, ML can be useful to pick covariates:

e ML helps pick X; when we don't need them for identification
e This works for RCTs, DD, IV, etc with exogenous covariates only
e We can use ML when we want a better fit

Great application: first stage of IV:

o Conditional on (a) good instrument(s), we just want a good fit
e Nothing wrong with using ML to improve the first stage...

e As long as you're only using exogenous covariates
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Can we use ML to build a better counterfactual?

We need to reframe as a prediction exercise:

e What is a(n estimated) counterfactual?
e Just a guess at what would've happened without treatment
e This is a simple prediction exercise

e We can potentially use ML to help us generate this counterfactual

(Subject to all of the standard selection / identification issues)
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An example: Energy efficiency in California schools

Policy issue:
e Lots of money is being spent on EE upgrades
e But are they effective?
Approach:
e Look at hourly data from 2,000 public K-12 California schools
e Some schools decided to implement EE upgrades
e This was not randomized, so we use an FE approach

— Leverage high-resolution data for an ML-augmented FE method
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Estimating the effects of EE upgrades: version A

e We compare:

e Consumption at schools that retrofitted to those that didn't
e Consumption before and after retrofits

e We progressively add a series of control variables (school, hour and
month-of-sample fixed effects, plus interactions):

Yith = TDjt + i + kp + 7t + €t

Interpretation of 7: Average reduction in KWh at treated schools.
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Panel FE results are unstable

Panel fixed effects
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Can machine learning help?

e Panel FE models aren’t properly specified.
e Schools are very heterogeneous (e.g., climate, size, school calendar).
o ldeally, introduce school-specific coefficients and trends in a very
flexible manner.
e We easily came up with ~6,000,000 candidate control variables by
making them school-hour specific!
e No clear ex ante optimal choice.
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Machine Learning: Advantages in this application

e Exogenous weather variation and predictable weekly and seasonal
patterns drive variation in electricity consumption.

e Schools are relatively stable consumption units:
e as opposed to single households that move around, unobservably buy a
new appliance, expand family size, etc.
e as opposed to businesses and manufacturing plants, exposed to
macroeconomic shocks.
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Machine Learning: Advantages in this application

e Exogenous weather variation and predictable weekly and seasonal
patterns drive variation in electricity consumption.

e Schools are relatively stable consumption units:

e as opposed to single households that move around, unobservably buy a
new appliance, expand family size, etc.

e as opposed to businesses and manufacturing plants, exposed to
macroeconomic shocks.

Prediction can do well!
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Machine Learning: Approach

Step 1

e Use pre-treatment data to predict electricity consumption as a
function of flexible co-variates, for each school separately.
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Machine Learning: Approach

Step 1

e Use pre-treatment data to predict electricity consumption as a
function of flexible co-variates, for each school separately.

e For control schools, determine a “pre-treatment period” randomly.
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Machine Learning: Approach

Step 1

e Use pre-treatment data to predict electricity consumption as a
function of flexible co-variates, for each school separately.
e For control schools, determine a “pre-treatment period” randomly.
e Use LASSO method (penalized regression).
e Minimizing the sum of the squared errors plus A - 37, |5j].
e Larger “tuning parameters”’ lead to fewer coefficients.

e Use bootstrapped cross-validation with training and holdout samples
within pre-treatment.
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Machine Learning: Approach

Step 1

e Use pre-treatment data to predict electricity consumption as a
function of flexible co-variates, for each school separately.
e For control schools, determine a “pre-treatment period” randomly.
e Use LASSO method (penalized regression).
¢ Minimizing the sum of the squared errors plus A- 377, |5].
e Larger “tuning parameters”’ lead to fewer coefficients.
e Use bootstrapped cross-validation with training and holdout samples
within pre-treatment.
e Include a wide range of school-specific variables, and also consumption
at control schools (a la synthetic control).
e Also consider other alternatives (random forests).
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Machine Learning: Approach

Step 2

e Regress prediction errors on treatment and controls.
Yith = TDjt + cj + £p + Ve + Eien

e Data pooled across schools
o Replicates diff-in-diff approach, but Y variable is now the prediction
error
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Machine Learning: Graphical intuition
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Machine Learning: Graphical intuition

Energy consumption (kWh)
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Machine Learning: Graphical intuition
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Machine Learning: Graphical intuition
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ML diagnostics

>

150

vs)

15,000

10,000

5000+

Number of LASSO coefficients
Count of holiday variables

0 500 1000 1500 2000 2500 -60 -40 -20 0 20
Observations in training sample Coefficient on holiday variable

Intercept
Other schools

I
Temperature
Monty T——

Temp x Montn M—

Holiciay MEG— |
Weekday Mm—
Temp x Month x Weekday ™.
Temp x Weekday ™=
Month x Weekday ™.
Holiday x Weekday ™.

] 2 4 6 8 1
Fraction of school-block models selecting variable type

20 -10 0 10 20
Untreated  [ll Treated Prediction error (kwh)

PPHA 3460 Program Evaluation Lecture 16 50 / 52



ML results are stable across estimators

0 2 4 .6 .8 1

Panel fixed effects Panel with temperature ~ — Machine learning
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Recap

TL;DR:

@ New datasets open new questions
® Machine learning offers opportunity

® Both require some careful consideration or tweaks to be useful for us
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