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From last time: regression discontinuity

As usual, we’d like to run:

Yi = α+ τDi + εi

The regression discontinuity:

• Suppose Di is determined by whether or not Xi lies above a cutoff, c

• We call Xi the “running variable” here

• Idea: Having Xi just above or just below c is as good as random...

• ... And there is a discontinuous change in Di as a result of crossing c

→ We can compare Yi for units with Xi just above c to Yi for units with
Xi just below c

To estimate, run:

Yi = α+ τDi + f (Xi ) + εi for c − h < Xi < c + h

where Di = 1[Xi ≥ c]
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Sharp regression discontinuity

In the most straightforward, or “sharp” RD design:

• Pr(Di = 1|Xi ≥ c) = 1 and Pr(Di = 1|Xi < c) = 0

• Pr(Di = 1|Xi ≥ c)− Pr(Di = 1|Xi < c) = 1

• Nobody with Xi < c gets treated

• Everybody with Xi ≥ c gets treated

• The probability of treatment jumps from 0 to 100% as Xi crosses c

• Di = 1(Xi ≥ c)

→ This is equivalent to perfect compliance in the RCT
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Sharp regression discontinuity: Treatment assignment
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Fuzzy regression discontinuity

Sometimes, treatment status doesn’t change by 100% at the cutoff:

• In this case, we implement the fuzzy regression discontinuity

• Formally:

0 < lim
x↓c

Pr(Di = 1|Xi = x)− lim
x↑c

Pr(Di = 1|Xi = x) < 1

This implies:

Pr(Di = 1|Xi ≥ c)− Pr(Di = 1|Xi < c) = k , where 0 < k < 1

• Some units with Xi < c (may) get treated; more with Xi ≥ c do

• Crossing c leads to a change in the probability of treatment

• Treatment probability jumps from 0 ≤ p ≤ 1 to 0 ≤ q ≤ 1 (q > p)

• Di is no longer a deterministic function of Xi

→ This is equivalent to imperfect compliance in the RCT
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Fuzzy regression discontinuity: Treatment assignment
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Estimating τ with a fuzzy RD

We need to account for the incomplete change in Di :

• To do this, we estimate two objects:

1 Effect of going from Xi < c to Xi ≥ c on our outcome Yi

• This will be too close to zero, because there is some noncompliance

• We call this the reduced form

2

Effect of going from Xi < c to Xi ≥ c on treatment status Di

• This allows us to quantify the non-compliance

• We call this the first stage

→ This should be feeling familiar...
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Estimating the reduced form

The effect of crossing the threshold on outcomes is just:

θ = lim
x↓c

E [Yi |Xi = x ]− lim
x↑c

E [Yi |Xi = x ]

We can just estimate this as:

θ̂ = Ȳ (c ≤ Xi ≤ c + h)− Ȳ (c − h ≤ Xi < c)

Via regression:

Yi = α+ θ1[Xi ≥ c] + νi for c − h ≤ Xi ≤ c + h

Note that as before, θ̂ = θ at the threshold only
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Estimating the first stage

The effect of crossing the threshold on treatment status is just:

γ = lim
x↓c

E [Di |Xi = x ]− lim
x↑c

E [Di |Xi = x ]

We can just estimate this as:

γ̂ = D̄(c ≤ Xi ≤ c + h)− D̄(c − h ≤ Xi < c)

Via regression:

Di = α+ γ1[Xi ≥ c] + ηi for c − h ≤ Xi ≤ c + h

→ In the sharp RD, γ = 1

→ γ̂ estimates the change in probability of treatment from crossing c
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Putting the pieces together

The fuzzy RD estimator gets you:

τFRD =
limx↓c E [Yi |Xi = x ]− limx↑c E [Yi |Xi = x ]

limx↓c E [Di |Xi = x ]− limx↑c E [Di |Xi = x ]

We can estimate this as:

τ̂FRD =
Ȳ (c ≤ Xi ≤ c + h)− Ȳ (c − h ≤ Xi < c)

D̄(c ≤ Xi ≤ c + h)− D̄(c − h ≤ Xi < c)
=

θ̂

γ̂

This is just an IV estimator, where Zi = 1[Xi ≥ c]!
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Fuzzy RD as IV

Since the fuzzy RD is just an IV, we need the standard IV assumptions:

1 First stage: E [Di |Xi ≥ c] ∕= E [Di |Xi < c] for some i

2 Independence: Yi (Di , 1[Xi ≥ c]),Di (Xi ≥ c),Di (Xi < c) ⊥ 1[Xi ≥ c]

3 Exclusion restriction: Yi (Xi ≥ c ,Di ) = Yi (Xi < c ,Di ) for Di ∈ {0, 1}
4 Monotonicity: |Di (Xi ≥ c)− Di (Xi < c)| ≥ 0 for all i

Assumptions (2) and (3) together buy us:

1

Covariate smoothness:
E [Yi (1)|Xi = x ] and E [Yi (0)|Xi = x ] are continuous in x

With these assumptions, we get τFRD = τLATE
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Fuzzy RD: estimation methods

As with any other IV estimator, we can estimate fuzzy RD via 2SLS:

1 First stage:
Di = α+ γ1[Xi ≥ c] + νi

2 Second stage:
Yi = α+ τ D̂i + εi

We can also estimate fuzzy RD using the first stage and reduced form:

1

First stage:
Di = α+ γ1[Xi ≥ c] + νi

2

Reduced form:
Yi = α+ θ1[Xi ≥ c] + εi

τ̂FRD =
θ̂

γ̂
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Fuzzy RD as IV

What LATE are we estimating with fuzzy RD?

• Just like with the sharp RD, we get the LATE at c

• Different cutoffs c could generate different LATEs

• In addition, we have to worry about compliers

• Not all units go from Di = 0 to Di = 1 as Xi crosses c (this generates
the fuzz)

• We recover treatment effects for only those units who do move

→ We get the LATE for compliers at the threshold

→ Changing the set of compliers or the threshold (or both) could
generate different LATEs
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An example: Air pollution in China

Policy issue:

• Local air pollution (PM, SOx , NOx) is likely bad for human health

• But how bad?

Approach:

• Look at the Huai River heating policy in China

• Households north of the river got free coal

• This allowed them to heat their houses...

• ...but also led to substantial air pollution:

→ Use a RD model to compare northern to southern cities
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What do these Chinese cities look like?
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What do we get from the naive estimator?
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Enter the regression discontinuity
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Estimating the effects of air pollution on mortality

The authors use 2SLS to estimate a fuzzy regression discontinuity model:

Pollutioni = α+ γ1[Latitudei ≤ river ] + f (Latitudei ) + νi

Yi = α+ τ Pollutioni + f (Latitudei ) + εi

Where:
Pollutioni is a measure of the total suspended particulates in city i
Yi is life expectancy in city i
1[Latitudei ≤ river ] is equal to one if city i is north of the river
f (Latitudei ) is a flexible function of latitude
νi , εi are error terms
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First stage
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Reduced form
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2SLS
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RD implementation details

When we estimate RDs, we want to be careful to consider:

• Bandwidth selection

• Functional form
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Bandwidth selection
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Bandwidth selection

Key conversion: 1 degree ≈ 110 km
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Bandwidth selection

Two increasingly popular methods for RD bandwidth selection:

• Imbens and Kalyanaraman (2012)

• Calonico, Cattaneo, and Titiunik (2014a, 2014b, 2015)

→ Both implemented in R and Stata with the rdrobust package

→ Best practice: do these, but also test sensitivity to alternatives
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Bandwidth selection
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Bandwidth selection
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Functional form
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Functional form
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Functional form
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Functional form
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Functional form

Higher-order polynomials should not be used in RD:

• That is, anything with a non-linear term!

• Intuition: Endpoints have an outsized impact on polynomials...

• ... but this is really problematic for RD!

• In practice, estimates tend to be very sensitive

→ Instead, use (local) linear regression
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Recap

TL;DR:

1 The regression discontinuity is great

2 We can use it with non-binary treatments, and without sharp Di

assignment

3 But getting the details right is key!
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