Lecture 15: Regression discontinuity II

> PPHA 34600 Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

From last time: regression discontinuity

As usual, we'd like to run:

$$Y_i = \alpha + \tau D_i + \varepsilon_i$$

The regression discontinuity:

- Suppose D_i is determined by whether or not X_i lies above a cutoff, c
- We call X_i the "running variable" here
- Idea: Having X_i just above or just below c is as good as random...
- ... And there is a discontinuous change in D_i as a result of crossing c
- \rightarrow We can compare Y_i for units with X_i just above c to Y_i for units with X_i just below c

From last time: regression discontinuity

As usual, we'd like to run:

$$Y_i = \alpha + \tau D_i + \varepsilon_i$$

The regression discontinuity:

- Suppose D_i is determined by whether or not X_i lies above a cutoff, c
- We call X_i the "running variable" here
- Idea: Having X_i just above or just below c is as good as random...
- ... And there is a discontinuous change in D_i as a result of crossing c
- \rightarrow We can compare Y_i for units with X_i just above c to Y_i for units with X_i just below c

To estimate, run:

$$Y_i = \alpha + \tau D_i + f(X_i) + \varepsilon_i$$
 for $c - h < X_i < c + h$

where $D_i = \mathbf{1}[X_i \ge c]$

Sharp regression discontinuity

In the most straightforward, or "sharp" RD design:

- $Pr(D_i = 1 | X_i \ge c) = 1$ and $Pr(D_i = 1 | X_i < c) = 0$
- $Pr(D_i = 1 | X_i \ge c) Pr(D_i = 1 | X_i < c) = 1$
- Nobody with $X_i < c$ gets treated
- Everybody with $X_i \ge c$ gets treated
- The probability of treatment jumps from 0 to 100% as X_i crosses c
- $D_i = \mathbf{1}(X_i \ge c)$

Sharp regression discontinuity

In the most straightforward, or "sharp" RD design:

- $Pr(D_i = 1 | X_i \ge c) = 1$ and $Pr(D_i = 1 | X_i < c) = 0$
- $Pr(D_i = 1 | X_i \ge c) Pr(D_i = 1 | X_i < c) = 1$
- Nobody with $X_i < c$ gets treated
- Everybody with $X_i \ge c$ gets treated
- The probability of treatment jumps from 0 to 100% as X_i crosses c
- $D_i = \mathbf{1}(X_i \ge c)$
- $\rightarrow\,$ This is equivalent to perfect compliance in the RCT

Sharp regression discontinuity: Treatment assignment

Sometimes, treatment status doesn't change by 100% at the cutoff:

• In this case, we implement the fuzzy regression discontinuity

Sometimes, treatment status doesn't change by 100% at the cutoff:

- In this case, we implement the fuzzy regression discontinuity
- Formally:

$$0 < \lim_{x \downarrow c} \Pr(D_i = 1 | X_i = x) - \lim_{x \uparrow c} \Pr(D_i = 1 | X_i = x) < 1$$

Sometimes, treatment status doesn't change by 100% at the cutoff:

- In this case, we implement the fuzzy regression discontinuity
- Formally:

$$0 < \lim_{x \downarrow c} \Pr(D_i = 1 | X_i = x) - \lim_{x \uparrow c} \Pr(D_i = 1 | X_i = x) < 1$$

This implies:

 $Pr(D_i = 1 | X_i \ge c) - Pr(D_i = 1 | X_i < c) = k$, where 0 < k < 1

Sometimes, treatment status doesn't change by 100% at the cutoff:

- In this case, we implement the fuzzy regression discontinuity
- Formally:

$$0 < \lim_{x \downarrow c} \Pr(D_i = 1 | X_i = x) - \lim_{x \uparrow c} \Pr(D_i = 1 | X_i = x) < 1$$

This implies:

$$Pr(D_i = 1 | X_i \ge c) - Pr(D_i = 1 | X_i < c) = k$$
, where $0 < k < 1$

- Some units with $X_i < c \pmod{2}$ get treated; more with $X_i \ge c$ do
- Crossing c leads to a change in the probability of treatment
- Treatment probability jumps from $0 \le p \le 1$ to $0 \le q \le 1$ (q > p)
- D_i is no longer a deterministic function of X_i

Sometimes, treatment status doesn't change by 100% at the cutoff:

- In this case, we implement the fuzzy regression discontinuity
- Formally:

$$0 < \lim_{x \downarrow c} \Pr(D_i = 1 | X_i = x) - \lim_{x \uparrow c} \Pr(D_i = 1 | X_i = x) < 1$$

This implies:

$$Pr(D_i = 1 | X_i \ge c) - Pr(D_i = 1 | X_i < c) = k$$
, where $0 < k < 1$

- Some units with $X_i < c \pmod{2}$ get treated; more with $X_i \geq c$ do
- Crossing c leads to a change in the probability of treatment
- Treatment probability jumps from $0 \le p \le 1$ to $0 \le q \le 1$ (q > p)
- D_i is no longer a deterministic function of X_i
- $\rightarrow\,$ This is equivalent to imperfect compliance in the RCT

Fuzzy regression discontinuity: Treatment assignment

Estimating τ with a fuzzy RD

We need to account for the incomplete change in D_i :

- To do this, we estimate two objects:
- **1** Effect of going from $X_i < c$ to $X_i \ge c$ on our outcome Y_i
 - This will be too close to zero, because there is some noncompliance
 - We call this the reduced form

Estimating τ with a fuzzy RD

We need to account for the incomplete change in D_i :

- To do this, we estimate two objects:
- **1** Effect of going from $X_i < c$ to $X_i \ge c$ on our outcome Y_i
 - This will be too close to zero, because there is some noncompliance
 - We call this the **reduced form**
- **2** Effect of going from $X_i < c$ to $X_i \ge c$ on treatment status D_i
 - This allows us to quantify the non-compliance
 - We call this the first stage

Estimating τ with a fuzzy RD

We need to account for the incomplete change in D_i :

- To do this, we estimate two objects:
- **1** Effect of going from $X_i < c$ to $X_i \ge c$ on our outcome Y_i
 - This will be too close to zero, because there is some noncompliance
 - We call this the **reduced form**
- **2** Effect of going from $X_i < c$ to $X_i \ge c$ on treatment status D_i
 - This allows us to quantify the non-compliance
 - We call this the first stage
- \rightarrow This should be feeling familiar...

Estimating the reduced form

The effect of crossing the threshold on outcomes is just:

$$\theta = \lim_{x \downarrow c} E[Y_i | X_i = x] - \lim_{x \uparrow c} E[Y_i | X_i = x]$$

Estimating the reduced form

The effect of crossing the threshold on outcomes is just:

$$\theta = \lim_{x \downarrow c} E[Y_i | X_i = x] - \lim_{x \uparrow c} E[Y_i | X_i = x]$$

We can just estimate this as:

$$\hat{ heta} = ar{Y}(c \leq X_i \leq c+h) - ar{Y}(c-h \leq X_i < c)$$

Estimating the reduced form

The effect of crossing the threshold on outcomes is just:

$$\theta = \lim_{x \downarrow c} E[Y_i | X_i = x] - \lim_{x \uparrow c} E[Y_i | X_i = x]$$

We can just estimate this as:

$$\hat{ heta} = ar{Y}(c \leq X_i \leq c+h) - ar{Y}(c-h \leq X_i < c)$$

Via regression:

$$Y_i = \alpha + \theta \mathbf{1}[X_i \ge c] + \nu_i \text{ for } c - h \le X_i \le c + h$$

Note that as before, $\hat{\theta} = \theta$ at the threshold only

The effect of crossing the threshold on treatment status is just:

$$\gamma = \lim_{x \downarrow c} E[D_i | X_i = x] - \lim_{x \uparrow c} E[D_i | X_i = x]$$

The effect of crossing the threshold on treatment status is just:

$$\gamma = \lim_{x \downarrow c} E[D_i | X_i = x] - \lim_{x \uparrow c} E[D_i | X_i = x]$$

We can just estimate this as:

$$\hat{\gamma} = ar{D}(c \leq X_i \leq c+h) - ar{D}(c-h \leq X_i < c)$$

The effect of crossing the threshold on treatment status is just:

$$\gamma = \lim_{x \downarrow c} E[D_i | X_i = x] - \lim_{x \uparrow c} E[D_i | X_i = x]$$

We can just estimate this as:

$$\hat{\gamma} = ar{D}(c \leq X_i \leq c+h) - ar{D}(c-h \leq X_i < c)$$

Via regression:

$$D_i = \alpha + \gamma \mathbf{1}[X_i \ge c] + \eta_i$$
 for $c - h \le X_i \le c + h$

The effect of crossing the threshold on treatment status is just:

$$\gamma = \lim_{x \downarrow c} E[D_i | X_i = x] - \lim_{x \uparrow c} E[D_i | X_i = x]$$

We can just estimate this as:

$$\hat{\gamma} = ar{D}(c \leq X_i \leq c+h) - ar{D}(c-h \leq X_i < c)$$

Via regression:

$$D_i = \alpha + \gamma \mathbf{1}[X_i \ge c] + \eta_i$$
 for $c - h \le X_i \le c + h$

 $\rightarrow\,$ In the sharp RD, $\gamma=1$

 $\rightarrow~\hat{\gamma}$ estimates the change in probability of treatment from crossing c

Putting the pieces together

The fuzzy RD estimator gets you:

$$\tau^{FRD} = \frac{\lim_{x \downarrow c} E[Y_i | X_i = x] - \lim_{x \uparrow c} E[Y_i | X_i = x]}{\lim_{x \downarrow c} E[D_i | X_i = x] - \lim_{x \uparrow c} E[D_i | X_i = x]}$$

Putting the pieces together

The fuzzy RD estimator gets you:

$$\tau^{FRD} = \frac{\lim_{x \downarrow c} E[Y_i | X_i = x] - \lim_{x \uparrow c} E[Y_i | X_i = x]}{\lim_{x \downarrow c} E[D_i | X_i = x] - \lim_{x \uparrow c} E[D_i | X_i = x]}$$

We can estimate this as:

$$\hat{\tau}^{FRD} = \frac{\bar{Y}(c \le X_i \le c+h) - \bar{Y}(c-h \le X_i < c)}{\bar{D}(c \le X_i \le c+h) - \bar{D}(c-h \le X_i < c)} = \frac{\hat{\theta}}{\hat{\gamma}}$$

The fuzzy RD estimator gets you:

$$\tau^{FRD} = \frac{\lim_{x \downarrow c} E[Y_i | X_i = x] - \lim_{x \uparrow c} E[Y_i | X_i = x]}{\lim_{x \downarrow c} E[D_i | X_i = x] - \lim_{x \uparrow c} E[D_i | X_i = x]}$$

We can estimate this as:

$$\hat{\tau}^{FRD} = \frac{\bar{Y}(c \le X_i \le c+h) - \bar{Y}(c-h \le X_i < c)}{\bar{D}(c \le X_i \le c+h) - \bar{D}(c-h \le X_i < c)} = \frac{\hat{\theta}}{\hat{\gamma}}$$

This is just an IV estimator, where $Z_i = \mathbf{1}[X_i \ge c]!$

Since the fuzzy RD is just an IV, we need the standard IV assumptions:

- **1** First stage: $E[D_i|X_i \ge c] \ne E[D_i|X_i < c]$ for some *i*
- **2** Independence: $Y_i(D_i, \mathbf{1}[X_i \ge c]), D_i(X_i \ge c), D_i(X_i < c) \perp \mathbf{1}[X_i \ge c]$
- **3** Exclusion restriction: $Y_i(X_i \ge c, D_i) = Y_i(X_i < c, D_i)$ for $D_i \in \{0, 1\}$
- $\textbf{ Monotonicity: } |D_i(X_i \geq c) D_i(X_i < c)| \geq 0 \text{ for all } i$

Since the fuzzy RD is just an IV, we need the standard IV assumptions:

- **1** First stage: $E[D_i|X_i \ge c] \ne E[D_i|X_i < c]$ for some *i*
- **2** Independence: $Y_i(D_i, \mathbf{1}[X_i \ge c]), D_i(X_i \ge c), D_i(X_i < c) \perp \mathbf{1}[X_i \ge c]$
- **8** Exclusion restriction: $Y_i(X_i \ge c, D_i) = Y_i(X_i < c, D_i)$ for $D_i \in \{0, 1\}$
- $\textbf{ Monotonicity: } |D_i(X_i \geq c) D_i(X_i < c)| \geq 0 \text{ for all } i$

Assumptions (2) and (3) together buy us:

• Covariate smoothness: $E[Y_i(1)|X_i = x]$ and $E[Y_i(0)|X_i = x]$ are continuous in x Since the fuzzy RD is just an IV, we need the standard IV assumptions:

- **1** First stage: $E[D_i|X_i \ge c] \ne E[D_i|X_i < c]$ for some *i*
- **2** Independence: $Y_i(D_i, \mathbf{1}[X_i \ge c]), D_i(X_i \ge c), D_i(X_i < c) \perp \mathbf{1}[X_i \ge c]$
- **8** Exclusion restriction: $Y_i(X_i \ge c, D_i) = Y_i(X_i < c, D_i)$ for $D_i \in \{0, 1\}$
- $\textbf{ 0 Monotonicity: } |D_i(X_i \geq c) D_i(X_i < c)| \geq 0 \text{ for all } i$

Assumptions (2) and (3) together buy us:

• Covariate smoothness: $E[Y_i(1)|X_i = x]$ and $E[Y_i(0)|X_i = x]$ are continuous in x

With these assumptions, we get $\tau^{\textit{FRD}} = \tau^{\textit{LATE}}$

Fuzzy RD: estimation methods

As with any other IV estimator, we can estimate fuzzy RD via 2SLS:

1 First stage:

$$D_i = \alpha + \gamma \mathbf{1}[X_i \ge c] + \nu_i$$

Ø Second stage:

$$Y_i = \alpha + \tau \hat{D}_i + \varepsilon_i$$

Fuzzy RD: estimation methods

As with any other IV estimator, we can estimate fuzzy RD via 2SLS:

1 First stage:

$$D_i = \alpha + \gamma \mathbf{1}[X_i \ge c] + \nu_i$$

Ø Second stage:

$$Y_i = \alpha + \tau \hat{D}_i + \varepsilon_i$$

We can also estimate fuzzy RD using the first stage and reduced form:

1 First stage:

$$D_i = \alpha + \gamma \mathbf{1}[X_i \ge c] + \nu_i$$

8 Reduced form:

$$Y_i = lpha + heta \mathbf{1}[X_i \ge c] + arepsilon_i$$
 $\hat{ au}^{FRD} = rac{\hat{ heta}}{\hat{\gamma}}$

What LATE are we estimating with fuzzy RD?

- Just like with the sharp RD, we get the LATE at c
 - Different cutoffs c could generate different LATEs

What LATE are we estimating with fuzzy RD?

- Just like with the sharp RD, we get the LATE at c
 - Different cutoffs c could generate different LATEs
- In addition, we have to worry about compliers
 - Not all units go from $D_i = 0$ to $D_i = 1$ as X_i crosses c (this generates the fuzz)
 - We recover treatment effects for only those units who do move

What LATE are we estimating with fuzzy RD?

- Just like with the sharp RD, we get the LATE at c
 - Different cutoffs c could generate different LATEs
- In addition, we have to worry about compliers
 - Not all units go from $D_i = 0$ to $D_i = 1$ as X_i crosses c (this generates the fuzz)
 - We recover treatment effects for only those units who do move
- $\rightarrow\,$ We get the LATE for compliers at the threshold
- $\rightarrow\,$ Changing the set of compliers or the threshold (or both) could generate different LATEs

An example: Air pollution in China

Policy issue:

- Local air pollution (PM, SO_x , NO_x) is likely bad for human health
- But how bad?

Approach:

- Look at the Huai River heating policy in China
- Households north of the river got free coal
- This allowed them to heat their houses...
- ...but also led to substantial air pollution:
- $\rightarrow\,$ Use a RD model to compare northern to southern cities

What do these Chinese cities look like?

Table 1. Summary statistics

			Difference	Adjusted difference		
	South	North	in means	in means	P value	
Variable	(1)	(2)	(3)	(4)	(5)	
Panel 1: Air pollution exposure at China's						
Disease Surveillance Points						
TSPs, µg/m ³	354.7	551.6	196.8***	199.5***	<0.001/0.002	
SO ₂ , μg/m ³	91.2	94.5	3.4	-3.1	0.812/0.903	
NO _x , μg/m ³	37.9	50.2	12.3***	-4.3	<0.001/0.468	
Panel 2: Climate at the Disease Surveillance Points						
Heating degree days	2,876	6,220	3,344***	482	<0.001/0.262	
Cooling degree days	2,050	1,141	-910***	-183	<0.001/0.371	
Panel 3: Demographic features of China's						
Disease Surveillance Points						
Years of education	7.23	7.57	0.34	-0.65	0.187/0.171	
Share in manufacturing	0.14	0.11	-0.03	-0.15***	0.202/0.002	
Share minority	0.11	0.05	-0.05	0.04	0.132/0.443	
Share urban	0.42	0.42	0.00	-0.20*	0.999/0.088	
Share tap water	0.50	0.51	0.02	-0.32**	0.821/0.035	
Rural, poor	0.21	0.23	0.01	-0.33*	0.879/0.09	
Rural, average income	0.34	0.33	0.00	0.24	0.979/0.308	
Rural, high income	0.21	0.19	-0.02	0.27	0.772/0.141	
Urban site	0.24	0.25	0.01	-0.19	0.859/0.241	
Predicted life expectancy	74.0	75.5	1.54***	-0.24	<0.001/0.811	
Actual life expectancy	74.0	75.5	1.55	-5.04**	0.158/0.044	

What do we get from the naive estimator?

Table 2. Impact of TSPs (100 μ g/m³) on health outcomes using conventional strategy (ordinary least squares)

Dependent variable	(1)	(2)
In(All cause mortality rate)	0.03* (0.01)	0.03** (0.01)
In(Cardiorespiratory mortality rate)	0.04** (0.02)	0.04** (0.02)
In(Noncardiorespiratory mortality rate)	0.01 (0.02)	0.01 (0.02)
Life expectancy, y	-0.54** (0.26)	-0.52** (0.23)
Climate controls	No	Yes
Census and DSP controls	No	Yes

Enter the regression discontinuity

The authors use 2SLS to estimate a fuzzy regression discontinuity model:

$$\begin{aligned} \text{Pollution}_i &= \alpha + \gamma \mathbf{1}[\text{Latitude}_i \leq \text{river}] + f(\text{Latitude}_i) + \nu_i \\ Y_i &= \alpha + \tau \widehat{\text{Pollution}}_i + f(\text{Latitude}_i) + \varepsilon_i \end{aligned}$$

Where:

Pollution_i is a measure of the total suspended particulates in city i Y_i is life expectancy in city i $\mathbf{1}[Latitude_i \leq river]$ is equal to one if city i is north of the river $f(Latitude_i)$ is a flexible function of latitude ν_i, ε_i are error terms

First stage

Reduced form

Lecture 15 19 / 32

Dependent variable	(1)	(2)	(3)	
Panel 1: Impact of "North" on the listed variable, ordinary least squares				
TSPs, 100 μg/m ³	2.48*** (0.65)	1.84*** (0.63)	2.17*** (0.66)	
In(All cause mortality rate)	0.22* (0.13)	0.26* (0.13)	0.30* (0.15)	
In(Cardiorespiratory mortality rate)	0.37** (0.16)	0.38** (0.16)	0.50*** (0.19)	
In(Noncardiorespiratory mortality rate)	0.00 (0.13)	0.08 (0.13)	0.00 (0.13)	
Life expectancy, y	-5.04** (2.47)	-5.52** (2.39)	-5.30* (2.85)	
Panel 2: Impact of TSPs on the listed variable, two-stage least squares				
In(All cause mortality rate)	0.09* (0.05)	0.14** (0.07)	0.14* (0.08)	
In(Cardiorespiratory mortality rate)	0.15** (0.06)	0.21** (0.09)	0.23** (0.10)	
In(Noncardiorespiratory mortality rate)	0.00 (0.05)	0.04 (0.07)	0.00 (0.06)	
Life expectancy, y	-2.04** (0.92)	-3.00** (1.33)	-2.44 (1.50)	
Climate controls	No	Yes	Yes	
Census and DSP controls	No	Yes	Yes	
Polynomial in latitude	Cubic	Cubic	Linear	
Only DSP locations within 5° latitude	No	No	Yes	

Table 3. Using the Huai River policy to estimate the impact of TSPs (100 µg/m³) on health outcomes

When we estimate RDs, we want to be careful to consider:

- Bandwidth selection
- Functional form

Bandwidth selection

Bandwidth selection

Key conversion: 1 degree \approx 110 km

Program Evaluation

Two increasingly popular methods for RD bandwidth selection:

- Imbens and Kalyanaraman (2012)
- Calonico, Cattaneo, and Titiunik (2014a, 2014b, 2015)
- $\rightarrow\,$ Both implemented in R and $\rm STATA$ with the rdrobust package
- \rightarrow Best practice: do these, but also test sensitivity to alternatives

Bandwidth selection

Robustness checks of choice of functional form for latitude, DSP locations within 5^0 Latitude of Huai River

	Linear &	Quadratic	Cubic &	
	Controls	& Controls	Controls	
	(1)	(2)	(3)	
Panel 1: Impact of "North" on the Listed Varia	able, Ordinary I	Least Squares		
TSP (100 μg/m ³)	2.17***	1.18*	0.60	
	(0.66)	(0.69)	(0.55)	
	[0.576]	[0.0001]	[0.28]	
	{232}	{216.4}	{215.8}	
ln(All Cause Mortality Rate)	0.30*	0.24	0.33	
	(0.15)	(0.17)	(0.20)	
	[0.171]	[0.587]	[0.577]	
	{21.91}	{22.84}	{23.74}	
In(Cardiorespiratory Mortality Rate)	0.50***	0.40*	0.51**	
	(0.19)	(0.22)	(0.24)	
	[0.042]	[0.359]	[0.652]	
	{56.1}	{56.05}	{57.19}	
ln(Non-Cardiorespiratory Mortality Rate)	0.00	0.02	0.09	
	(0.13)	(0.15)	(0.18)	
	[0.999]	[0.931]	[0.66]	
	{8.704}	{10.56}	{11.73}	
PHA 34600 Program	Evaluation		Lecture 15	25

/ 32

Bandwidth selection

0

within 5 [°] Latitude of Huai River			
	Linear &	Quadratic	Cubic &
	Controls	& Controls	Controls
	(1)	(2)	(3)
Panel 2: Impact of TSP (100 µg/m ³) on the Lis	ted Variable, T	wo-stage Least S	quares
In(All Cause Mortality Rate)	0.14*	0.20	0.56
	(0.08)	(0.17)	(0.56)
In(Cardiorespiratory Mortality Rate)	0.23**	0.34	0.85
	(0.10)	(0.21)	(0.76)
ln(Non-Cardiorespiratory Mortality Rate)	0.00	0.02	0.16
	(0.06)	(0.13)	(0.34)
Life Expectancy (years)	-2.44	-3.44	-9.57
	(1.50)	(3.26)	(10.03)

Robustness checks of choice of functional form for latitude, DSP locations

Functional form

Functional form

Functional form

Robustness checks of choice of functional form for latitude

	Linear &	Quadratic	Cubic &	Quartic &	Quintic &
	Controls	& Controls	Controls	Controls	Controls
	(1)	(2)	(3)	(4)	(5)
Panel 1: Impact of "North" on the Listed Vari	able, Ordina	ry Least Squa	res		
TSP (100 μg/m ³)	2.89***	2.63***	1.84***	1.95***	1.52**
	(0.56)	(0.49)	(0.63)	(0.59)	(0.72)
	[0.988]	[0.068]	[0.148]	[0.229]	[0.671]
	{492.4}	{489}	{487.2}	{486.3}	{487.5}
ln(All Cause Mortality Rate)	0.12	0.09	0.26*	0.26**	0.37**
	(0.10)	(0.10)	(0.13)	(0.13)	(0.16)
	[0.276]	[0.215]	[0.035]	[0.908]	[0.409]
	{39.88}	{38.8}	{34.11}	{35.92}	{36.13}
In(Cardiorespiratory Mortality Rate)	0.13	0.09	0.38**	0.39**	0.47**
	(0.13)	(0.13)	(0.16)	(0.16)	(0.19)
	[0.652]	[0.243]	[0.003]	[0.747]	[0.696]
	{102.3}	{101.5}	{91.92}	{93.34}	{94.62}
ln(Non-Cardiorespiratory Mortality Rate)	0.09	0.05	0.08	0.07	0.19
	(0.10)	(0.09)	(0.13)	(0.12)	(0.14)
	[0.135]	[0.151]	[0.933]	[0.973]	[0.35]
	{43.04}	{41.27}	{43.13}	{45.07}	{44.97}
Life Expectancy (years)	-1.62	-1.29	-5.52**	-5.67**	-5.43*
	(1.66)	(1.68)	(2.39)	(2.36)	(2.94)
	[0.101]	[0.6]	[0.001]	[0.737]	[0.984]
	{757.1}	{758}	{746.8}	{748.2}	{750.2}

Robustness checks of choice of functional form for latitude

	Linear & Controls	Quadratic & Controls	Cubic & Controls	Quartic & Controls	Quintic & Controls
	(1)	(2)	(3)	(4)	(5)
Panel 2: Impact of TSP (100 μ g/m ³) on the Listed Variable, Two-stage Least Squares					
ln(All Cause Mortality Rate)	0.04	0.03	0.14**	0.13**	0.24*
	(0.03)	(0.04)	(0.07)	(0.06)	(0.13)
In(Cardiorespiratory Mortality Rate)	0.05	0.03	0.21**	0.20**	0.31*
	(0.04)	(0.05)	(0.09)	(0.08)	(0.17)
ln(Non-Cardiorespiratory Mortality Rate)	0.03	0.02	0.04	0.04	0.13
	(0.03)	(0.03)	(0.07)	(0.06)	(0.10)
Life Expectancy (years)	-0.56	-0.49	-3.00**	-2.90**	-3.56
	(0.54)	(0.62)	(1.33)	(1.24)	(2.34)

Higher-order polynomials should not be used in RD:

- That is, anything with a non-linear term!
- Intuition: Endpoints have an outsized impact on polynomials...
- ... but this is really problematic for RD!
- In practice, estimates tend to be very sensitive
- \rightarrow Instead, use (local) linear regression

TL;DR:

- 1 The regression discontinuity is great
- We can use it with non-binary treatments, and without sharp D_i assignment
- **3** But getting the details right is key!