Lecture 10: Instrumental variables III

> PPHA 34600 Prof. Fiona Burlig

Harris School of Public Policy University of Chicago Z_i is a valid instrument when the following are satisfied:

- **1** First stage: $Cov(Z_i, D_i) \neq 0$
- **2** Exclusion restriction: $Cov(Z_i, \varepsilon_i) = 0$

When we have these two conditions, we can...:

- Handle OVB
- Handle measurement error

With $\tau_i = \tau$ for all *i*, life is "easy":

- All we need is a first stage...
- ... and an exclusion restriction ()...
- ... and we are in business!

With $\tau_i = \tau$ for all *i*, life is "easy":

- All we need is a first stage...
- ... and an exclusion restriction ()...
- ... and we are in business!

What happens with heterogeneous treatment effects?

 \rightarrow What are we actually recovering with $\hat{\tau}^{IV}?$

With $\tau_i = \tau$ for all *i*, life is "easy":

- All we need is a first stage...
- ... and an exclusion restriction ()...
- ... and we are in business!

What happens with heterogeneous treatment effects?

- \rightarrow What are we actually recovering with $\hat{\tau}^{IV}?$
 - Recall that we set up IV with the following decomposition:

$$D_i = B_i \varepsilon_i + C_i$$

With $\tau_i = \tau$ for all *i*, life is "easy":

- All we need is a first stage...
- ... and an exclusion restriction ()...
- ... and we are in business!

What happens with heterogeneous treatment effects?

- \rightarrow What are we actually recovering with $\hat{\tau}^{IV}?$
 - Recall that we set up IV with the following decomposition:

$$D_i = B_i \varepsilon_i + C_i$$

- For the IV to work, it must be correlated with C_i but not $B_i \varepsilon_i$
- But! Z_i is just generating variation in part of C_i

With $\tau_i = \tau$ for all *i*, life is "easy":

- All we need is a first stage...
- ... and an exclusion restriction ()...
- ... and we are in business!

What happens with heterogeneous treatment effects?

- \rightarrow What are we actually recovering with $\hat{\tau}^{IV}?$
 - Recall that we set up IV with the following decomposition:

$$D_i = B_i \varepsilon_i + C_i$$

- For the IV to work, it must be correlated with C_i but not $B_i \varepsilon_i$
- But! Z_i is just generating variation in part of C_i
- If this part affects Y_i differently than the non-moved bit, $\hat{\tau} \neq \tau^{ATE}$

PPHA 34600

Let's generalize our setup a bit:

• $Y_i(D_i, Z_i)$ is the outcome as a function of both treatment and the instrument

Let's generalize our setup a bit:

- $Y_i(D_i, Z_i)$ is the outcome as a function of both treatment and the instrument
- Y_i(D_i = 1, Z_i) Y_i(D_i = 0, Z_i): Causal effect of treatment given your instrument
- Y_i(D_i, Z_i = 1) Y_i(D_i, Z_i = 0): Causal effect of your instrument given your treatment status

In our intended causal chain, $Z_i \rightarrow D_i \rightarrow Y_i$:

- We want notation to think about Z_i having a causal effect on D_i. Define:
 - $D_i(Z_i = 1)$ or just $D_i(1)$ is treatment status when $Z_i = 1$
 - $D_i(Z_i = 0)$ or just $D_i(0)$ is treatment status when $Z_i = 0$

In our intended causal chain, $Z_i \rightarrow D_i \rightarrow Y_i$:

- We want notation to think about Z_i having a causal effect on D_i. Define:
 - $D_i(Z_i = 1)$ or just $D_i(1)$ is treatment status when $Z_i = 1$
 - $D_i(Z_i = 0)$ or just $D_i(0)$ is treatment status when $Z_i = 0$
- Observed treatment status is just:

$$D_i = D_i(0) + (D_i(1) - D_i(0))Z_i = \alpha + \gamma_i Z_i + \nu_i$$

In our intended causal chain, $Z_i \rightarrow D_i \rightarrow Y_i$:

- We want notation to think about Z_i having a causal effect on D_i. Define:
 - $D_i(Z_i = 1)$ or just $D_i(1)$ is treatment status when $Z_i = 1$
 - $D_i(Z_i = 0)$ or just $D_i(0)$ is treatment status when $Z_i = 0$
- Observed treatment status is just:

$$D_i = D_i(0) + (D_i(1) - D_i(0))Z_i = \alpha + \gamma_i Z_i + \nu_i$$

(This should look familiar!)

- As before, α = E[D_i(0)]
- But now $\gamma_i \equiv (D_i(1) D_i(0))$: the *i*-specific causal effect of Z_i on D_i

In our intended causal chain, $Z_i \rightarrow D_i \rightarrow Y_i$:

- We want notation to think about Z_i having a causal effect on D_i. Define:
 - $D_i(Z_i = 1)$ or just $D_i(1)$ is treatment status when $Z_i = 1$
 - $D_i(Z_i = 0)$ or just $D_i(0)$ is treatment status when $Z_i = 0$
- Observed treatment status is just:

$$D_i = D_i(0) + (D_i(1) - D_i(0))Z_i = \alpha + \gamma_i Z_i + \nu_i$$

(This should look familiar!)

- As before, $\alpha = E[D_i(0)]$
- But now $\gamma_i \equiv (D_i(1) D_i(0))$: the *i*-specific causal effect of Z_i on D_i
- \rightarrow We can't observe both $D_i(1)$ and $D_i(0)$ (why?)

In our intended causal chain, $Z_i \rightarrow D_i \rightarrow Y_i$:

- We want notation to think about Z_i having a causal effect on D_i. Define:
 - $D_i(Z_i = 1)$ or just $D_i(1)$ is treatment status when $Z_i = 1$
 - $D_i(Z_i = 0)$ or just $D_i(0)$ is treatment status when $Z_i = 0$
- Observed treatment status is just:

$$D_i = D_i(0) + (D_i(1) - D_i(0))Z_i = \alpha + \gamma_i Z_i + \nu_i$$

(This should look familiar!)

- As before, α = E[D_i(0)]
- But now $\gamma_i \equiv (D_i(1) D_i(0))$: the *i*-specific causal effect of Z_i on D_i
- \rightarrow We can't observe both $D_i(1)$ and $D_i(0)$ (why?)
- \rightarrow We can hope for the *average* causal effect of Z_i on $D_i = E[\gamma_i]$

PPHA 34600

We'll make four assumptions:

- **1** First stage: $E[D_i|Z_i = 1] \neq E[D_i|Z_i = 0]$ for some *i*
 - This is the same as before: $Cov(D_i, Z_i) \neq 0$

2

3 4 We'll make four assumptions:

- **1** First stage: $E[D_i|Z_i = 1] \neq E[D_i|Z_i = 0]$ for some *i*
 - This is the same as before: $Cov(D_i, Z_i) \neq 0$
- **2** Independence: $Y_i(D_i, Z_i), D_i(1), D_i(0) \perp Z_i$
- **8** Exclusion restriction: $Y_i(Z_i = 1, D_i) = Y_i(Z_i = 0, D_i)$

4

What used to just be the exclusion restriction, $Cov(Z_i, \varepsilon_i) = 0$ is now: (A) Independence: $Y_i(D_i, Z_i), D_i(1), D_i(0) \perp Z_i$

What used to just be the exclusion restriction, $Cov(Z_i, \varepsilon_i) = 0$ is now: (A) Independence: $Y_i(D_i, Z_i), D_i(1), D_i(0) \perp Z_i$

• The reduced form, a regression of Y_i on Z_i , is identified:

 $E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0]$ = $E[Y_i(D_i(Z_i = 1), Z_i = 1)|Z_i = 1] = E[Y_i(D_i(Z_i = 0), Z_i = 0)|Z_i = 0]$ = $E[Y_i(D_i(Z_i = 1), 1) - Y_i(D_i(Z_i = 0), 0)]$

What used to just be the exclusion restriction, $Cov(Z_i, \varepsilon_i) = 0$ is now: (A) Independence: $Y_i(D_i, Z_i), D_i(1), D_i(0) \perp Z_i$

• The reduced form, a regression of Y_i on Z_i , is identified:

 $E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0]$ = $E[Y_i(D_i(Z_i = 1), Z_i = 1)|Z_i = 1] = E[Y_i(D_i(Z_i = 0), Z_i = 0)|Z_i = 0]$ = $E[Y_i(D_i(Z_i = 1), 1) - Y_i(D_i(Z_i = 0), 0)]$

• The first stage, a regression of D_i on Z_i , is identified:

$$E[D_i|Z_i = 1] - E[D_i|Z_i = 0]$$

= $E[D_i(Z_i = 1)|Z_i = 1] - E[D_i(Z_i = 0)|Z_i = 0]$
= $E[D_i(Z_i = 1) - D_i(Z_i = 0)]$

What used to just be the exclusion restriction, $Cov(Z_i, \varepsilon_i) = 0$ is now: (A) Independence: $Y_i(D_i, Z_i), D_i(1), D_i(0) \perp Z_i$

• The reduced form, a regression of Y_i on Z_i , is identified:

 $E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0]$ = $E[Y_i(D_i(Z_i = 1), Z_i = 1)|Z_i = 1] = E[Y_i(D_i(Z_i = 0), Z_i = 0)|Z_i = 0]$ = $E[Y_i(D_i(Z_i = 1), 1) - Y_i(D_i(Z_i = 0), 0)]$

• The first stage, a regression of D_i on Z_i , is identified:

$$E[D_i|Z_i = 1] - E[D_i|Z_i = 0]$$

= $E[D_i(Z_i = 1)|Z_i = 1] - E[D_i(Z_i = 0)|Z_i = 0]$
= $E[D_i(Z_i = 1) - D_i(Z_i = 0)]$

(B) Exclusion restriction: $Y_i(Z_i = 1, D_i) = Y_i(Z_i = 0, D_i)$

PPHA 34600

Program Evaluation

What used to just be the exclusion restriction, $Cov(Z_i, \varepsilon_i) = 0$ is now:

- (A) Independence: $Y_i(D_i, Z_i), D_i(1), D_i(0) \perp Z_i$
- (B) Exclusion restriction: $Y_i(Z_i = 1, D_i) = Y_i(Z_i = 0, D_i)$

What used to just be the exclusion restriction, $Cov(Z_i, \varepsilon_i) = 0$ is now:

- (A) Independence: $Y_i(D_i, Z_i), D_i(1), D_i(0) \perp Z_i$
- **(B)** Exclusion restriction: $Y_i(Z_i = 1, D_i) = Y_i(Z_i = 0, D_i)$
 - Z_i only affects Y_i through D_i

What used to just be the exclusion restriction, $Cov(Z_i, \varepsilon_i) = 0$ is now:

- (A) Independence: $Y_i(D_i, Z_i), D_i(1), D_i(0) \perp Z_i$
- (B) Exclusion restriction: $Y_i(Z_i = 1, D_i) = Y_i(Z_i = 0, D_i)$
 - Z_i only affects Y_i through D_i
 - This lets us write:

$$Y_i(1) = Y_i(D_i = 1, Z_i = 1) = Y_i(D_i = 1, Z_i = 0)$$

$$Y_i(0) = Y_i(D_i = 0, Z_i = 1) = Y_i(D_i = 0, Z_i = 0)$$

What used to just be the exclusion restriction, $Cov(Z_i, \varepsilon_i) = 0$ is now:

- (A) Independence: $Y_i(D_i, Z_i), D_i(1), D_i(0) \perp Z_i$
- **(B)** Exclusion restriction: $Y_i(Z_i = 1, D_i) = Y_i(Z_i = 0, D_i)$
 - Z_i only affects Y_i through D_i
 - This lets us write:

$$Y_i(1) = Y_i(D_i = 1, Z_i = 1) = Y_i(D_i = 1, Z_i = 0)$$

 $Y_i(0) = Y_i(D_i = 0, Z_i = 1) = Y_i(D_i = 0, Z_i = 0)$

We can combine these two to express:

$$egin{aligned} Y_i &= Y_i(D_i = 0, Z_i) + (Y_i(D_i = 1, Z_i) - Y_i(D_i = 0, Z_i))D_i \ &= Y_i(0) + (Y_i(1) - Y_i(0))D_i \end{aligned}$$

We'll make four assumptions:

- **1** First stage: $E[D_i|Z_i = 1] \neq E[D_i|Z_i = 0]$ for some *i*
 - This is the same as before: $Cov(D_i, Z_i) \neq 0$
- **2** Independence: $Y_i(D_i, Z_i), D_i(1), D_i(0) \perp Z_i$
- **8** Exclusion restriction: $Y_i(Z_i = 1, D_i) = Y_i(Z_i = 0, D_i)$
- **4** Monotonicity: $D_i(Z_i = 1) D_i(Z_i = 0) \ge 0$ for all *i*

Monotonicity

This new assumption says:

$$D_i(Z_i=1)-D_i(Z_i=0)\geq 0$$
 for all i

- While Z_i need not move everybody's treatment status...
- ... all affected units move in the same way

Monotonicity

This new assumption says:

$$D_i(Z_i=1)-D_i(Z_i=0)\geq 0$$
 for all i

- While Z_i need not move everybody's treatment status...
- ... all affected units move in the same way
- Either $D_i(Z_i = 1) \ge D_i(Z_i = 0)$ for all i
- Or $D_i(Z_i = 1) \leq D_i(Z_i = 0)$ for all i
- Moving from Z_i = 0 to Z_i = 0 doesn't move some units from D_i = 0 to D_i = 1 and others from D_i = 1 to D_i = 0

We'll make four assumptions:

- **1** First stage: $E[D_i|Z_i = 1] \neq E[D_i|Z_i = 0]$ for some *i*
 - This is the same as before: Cov(D_i, Z_i) ≠ 0
- **2** Independence: $Y_i(D_i, Z_i), D_i(1), D_i(0) \perp Z_i$
- **8** Exclusion restriction: $Y_i(Z_i = 1, D) = Y_i(Z_i = 0, D)$ for $D \in \{0, 1\}$
- **4** Monotonicity: $D_i(Z_i = 1) D_i(Z_i = 0) \ge 0$ for all *i*

As always, we'd (ideally) estimate the following regression:

 $Y_i = \alpha + \tau D_i + \varepsilon_i$

Since D_i is not randomly assigned, we also need an instrument, Z_i Recall that we can estimate $\hat{\tau}^{IV}$ using two regressions:

$$\underbrace{D_i = \alpha + \gamma Z_i + \eta_i}_{c \to -\infty}$$

first stage

and

$$\underbrace{Y_i = \alpha + \theta Z_i + \nu_i}_{Y_i = \alpha + \theta Z_i + \nu_i}$$

reduced form

Then

$$\hat{\tau}^{IV} = \frac{\hat{\theta}}{\hat{\gamma}} = \frac{E[Y_i | Z_i = 1] - E[Y_i | Z_i = 0]}{E[D_i | Z_i = 1] - E[D_i | Z_i = 0]}$$

Let's decompose
$$\hat{\tau}^{IV} = \frac{E[Y_i|Z_i=1] - E[Y_i|Z_i=0]}{E[D_i|Z_i=1] - E[D_i|Z_i=0]}$$
:

$$E[Y_i|Z_i = 1] = \underbrace{E[Y_i(0) + (Y_i(1) - Y_i(0))D_i|Z_i = 1]}_{\text{exclusion restriction}}$$

$$= \underbrace{E[Y_i(0) + (Y_i(1) - Y_i(0))D_i(Z_i = 1)]}_{\text{independence}}$$
and
$$E[Y_i|Z_i = 0] = \underbrace{E[Y_i(0) + (Y_i(1) - Y_i(0))D_i|Z_i = 0]}_{\text{exclusion restriction}}$$

$$= \underbrace{E[Y_i(0) + (Y_i(1) - Y_i(0))D_i(Z_i = 0)]}_{\text{independence}}$$

Taken together, these two yield

$$E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0] = E[(Y_i(1) - Y_i(0))(D_i(1) - D_i(0))]$$

=
$$\underbrace{E[Y_i(1) - Y_i(0)|D_i(1) > D_i(0)]Pr(D_i(1) > D_i(0))}_{Pr(D_i(1) > D_i(0))}$$

monotonicity

where $E[Y_i(1) - Y_i(0)]$ is some kind of treatment effect $|D_i(1) > D_i(0)]$: for compliers only $Pr(D_i(1) > D_i(0))$: share of compliers in the population.

Taken together, these two yield

 $E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0] = E[(Y_i(1) - Y_i(0))(D_i(1) - D_i(0))]$ = $\underbrace{E[Y_i(1) - Y_i(0)|D_i(1) > D_i(0)]Pr(D_i(1) > D_i(0))}_{\text{restructive}}$

monotonicity

where $E[Y_i(1) - Y_i(0)]$ is some kind of treatment effect $|D_i(1) > D_i(0)]$: for compliers only $Pr(D_i(1) > D_i(0))$: share of compliers in the population. By the same logic:

$$E[D_i|Z_i = 1] - E[D_i|Z_i = 0] = \underbrace{E[D_i(1) - D_i(0)]}_{\text{independence}}$$

$$=\underbrace{Pr(D_i(1)>D_i(0))}$$

monotonicity

Taken together, these two yield

 $E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0] = E[(Y_i(1) - Y_i(0))(D_i(1) - D_i(0))]$ = $\underbrace{E[Y_i(1) - Y_i(0)|D_i(1) > D_i(0)]Pr(D_i(1) > D_i(0))}_{\text{monotonicity}}$

where $E[Y_i(1) - Y_i(0)]$ is some kind of treatment effect $|D_i(1) > D_i(0)]$: for compliers only $Pr(D_i(1) > D_i(0))$: share of compliers in the population. By the same logic:

$$E[D_i|Z_i = 1] - E[D_i|Z_i = 0] = \underbrace{E[D_i(1) - D_i(0)]}_{i=1}$$

independence

$$=\underbrace{Pr(D_i(1) > D_i(0))}_{\text{monotonicity}}$$

monotonicity

$$\hat{\tau}^{IV} = \frac{E[Y_i|Z_i=1] - E[Y_i|Z_i=0]}{E[D_i|Z_i=1] - E[D_i|Z_i=0]} = E[Y_i(1) - Y_i(0)|D_i(1) > D_i(0)]$$

PPHA 34600

What happens without monotonicity?

Monotonicity, $D_i(Z_i = 1) - D_i(Z_i = 0) \ge 0$ for all *i*, is a new assumption

- Without it, we have $D_i(Z_i = 1) D_i(Z_i = 0) < 0$ for some i
- This breaks our ability to estimate $\tau^{\textit{LATE}}$ using $\hat{\tau}^{\textit{IV}}$

What happens without monotonicity?

Monotonicity, $D_i(Z_i = 1) - D_i(Z_i = 0) \ge 0$ for all *i*, is a new assumption

- Without it, we have $D_i(Z_i = 1) D_i(Z_i = 0) < 0$ for some i
- This breaks our ability to estimate τ^{LATE} using $\hat{\tau}^{IV}$
- We had:

$$E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0] = E[(Y_i(1) - Y_i(0))(D_i(1) - D_i(0)]$$

• But without monotonicity:

$$E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0]$$

= $E[Y_i(1) - Y_i(0)|D_i(1) > D_i(0)]Pr(D_i(1) > D_i(0))$
 $-E[Y_i(1) - Y_i(0)|D_i(1) < D_i(0)]Pr(D_i(1) < D_i(0))$

What happens without monotonicity?

Monotonicity, $D_i(Z_i = 1) - D_i(Z_i = 0) \ge 0$ for all *i*, is a new assumption

- Without it, we have $D_i(Z_i = 1) D_i(Z_i = 0) < 0$ for some i
- This breaks our ability to estimate τ^{LATE} using $\hat{\tau}^{IV}$
- We had:

$$E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0] = E[(Y_i(1) - Y_i(0))(D_i(1) - D_i(0)]$$

• But without monotonicity:

$$E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0]$$

= $E[Y_i(1) - Y_i(0)|D_i(1) > D_i(0)]Pr(D_i(1) > D_i(0))$
 $-E[Y_i(1) - Y_i(0)|D_i(1) < D_i(0)]Pr(D_i(1) < D_i(0))$

- $\rightarrow\,$ We can't deal with this
 - τ^i could be > 0 for all *i*, but we could mistakenly estimate 0 effect
- \rightarrow We would have **defiers** ()

$\hat{\tau}^{IV} = E[Y_i(1) - Y_i(0)|D_i(1) > D_i(0)]$

What is this "conditional on $D_i(1) > D_i(0)$ " beast?

- $\hat{\tau}^{IV}$ estimates the (L)ATE, conditional on $D_i(1) > D_i(0)$
- $D_i(1) > D_i(0)$ means Z_i moves D_i

$\hat{\tau}^{IV} = E[Y_i(1) - Y_i(0)|D_i(1) > D_i(0)]$

What is this "conditional on $D_i(1) > D_i(0)$ " beast?

- $\hat{\tau}^{IV}$ estimates the (L)ATE, conditional on $D_i(1) > D_i(0)$
- $D_i(1) > D_i(0)$ means Z_i moves D_i
- We can divide the world into three groups:
 - **1** $D_i(1) > D_i(0)$: Compliers
 - **2** $D_i(1) = D_i(0) = 1$: Always-takers
 - **3** $D_i(1) = D_i(0) = 0$: Never-takers

$\hat{\tau}^{IV} = E[Y_i(1) - Y_i(0)|D_i(1) > D_i(0)]$

What is this "conditional on $D_i(1) > D_i(0)$ " beast?

- $\hat{\tau}^{IV}$ estimates the (L)ATE, conditional on $D_i(1) > D_i(0)$
- $D_i(1) > D_i(0)$ means Z_i moves D_i
- We can divide the world into three groups:
 - **1** $D_i(1) > D_i(0)$: Compliers
 - **2** $D_i(1) = D_i(0) = 1$: Always-takers
 - **3** $D_i(1) = D_i(0) = 0$: Never-takers
- \rightarrow Note that Z_i doesn't affect D_i for never-takers or always-takers
- $\rightarrow\,$ The instrument is useless for them
- $\rightarrow\,$ We can't learn about their treatment effects!
- \rightarrow (They essentially have no first stage)
- $\rightarrow\,$ We can estimate LATEs for compliers only

Non-compliance throwback

We looked at several scenarios of non-compliance:

• If only T can non-comply, we can show:

$$\hat{\tau}^{IV} = \frac{E[Y_i|Z_i=1] - E[Y_i|Z_i=0]}{E[D_i|Z_i=1]} = E[Y_i(1) - Y_i(0)|D_i=1] = \tau^{LATE}$$

• If only C can non-comply, we can show:

$$\hat{\tau}^{IV} = \frac{E[Y_i|Z_i=1] - E[Y_i|Z_i=0]}{E[D_i|Z_i=1]} = E[Y_i(1) - Y_i(0)|D_i=0] = \tau^{LATE}$$

If both T and C can non-comply:

$$\hat{\tau}^{IV} = \frac{E[Y_i|Z_i=1] - E[Y_i|Z_i=0]}{E[D_i|Z_i=1] - E[D_i|Z_i=0]}$$
$$= E[Y_i(1) - Y_i(0)|D_i(1) > D_i(0)] = \tau^{LATE}$$

Why does this work?

- We have an as-good-as-random estimate, $E[Y_i|Z_i = 1] E[Y_i|Z_i = 0]$
- We need to scale this by the complier proportion

Counting compliers

The fraction of compliers is just:

$$\pi^{C} = Pr(D_{i}(1) > D_{i}(0)) = E[D_{i}(1) - D_{i}(0)]$$
$$= E[D_{i}(1)] - E[D_{i}(0)]$$
$$= E[D_{i}|Z_{i} = 1] - E[D_{i}|Z_{i} = 0]$$

Counting compliers

The fraction of compliers is just:

$$\pi^{C} = Pr(D_{i}(1) > D_{i}(0)) = E[D_{i}(1) - D_{i}(0)]$$
$$= E[D_{i}(1)] - E[D_{i}(0)]$$
$$= E[D_{i}|Z_{i} = 1] - E[D_{i}|Z_{i} = 0]$$

We can also count the fraction of the treatment group which complies:

$$egin{aligned} & Pr(D_i(1) > D_i(0) | D_i = 1) = rac{Pr(D_i = 1 | D_i(1)) > D_i(0)) Pr(D_i(1) > D_i(0)}{Pr(D_i = 1)} \ & = rac{Pr(Z_i = 1)(E[D_i | Z_i = 1] - E[D_i | Z_i = 0])}{Pr(D_i = 1)} \end{aligned}$$

- We can't pick out individual compliers
- We can just count them
- But we can actually learn something more about them!

- We can't pick out individual compliers
- We can just count them
- But we can actually learn something more about them!

$$\frac{Pr(\textit{Male}_i = 1 | D_i(1) > D_i(0)}{Pr(\textit{Male}_i = 1)}$$

- We can't pick out individual compliers
- We can just count them
- But we can actually learn something more about them!

$$rac{Pr(Male_i=1|D_i(1)>D_i(0)}{Pr(Male_i=1)}$$

$$= \frac{\Pr(D_i(1) > D_i(0) | \textit{Male}_i = 1)}{\Pr(D_i(1) > D_i(0))}$$

- We can't pick out individual compliers
- We can just count them
- But we can actually learn something more about them!

$$\frac{Pr(\textit{Male}_i = 1 | D_i(1) > D_i(0)}{Pr(\textit{Male}_i = 1)}$$

$$= \frac{Pr(D_i(1) > D_i(0) | Male_i = 1)}{Pr(D_i(1) > D_i(0))}$$

$$=\frac{E[D_i|Z_i=1, Male_i=1-E[D_i|Z_i=0, Male_i=1]}{E[D_i|Z_i=1]-E[D_i|Z_i=0]}$$

- We can't pick out individual compliers
- We can just count them
- But we can actually learn something more about them!

Let's ask: are compliers more likely to be men?

$$\frac{Pr(\textit{Male}_i = 1 | D_i(1) > D_i(0)}{Pr(\textit{Male}_i = 1)}$$

$$= \frac{\Pr(D_i(1) > D_i(0) | Male_i = 1)}{\Pr(D_i(1) > D_i(0))}$$

$$=\frac{E[D_i|Z_i=1, Male_i=1-E[D_i|Z_i=0, Male_i=1]}{E[D_i|Z_i=1]-E[D_i|Z_i=0]}$$

 $\rightarrow\,$ This is just the first stage for men divided by the overall first stage!

Heterogeneous τ_i makes things interesting:

- With homogenous τ_i , all instruments should yield the same τ^{LATE}
- With heterogeneous τ , this need not be true!

Heterogeneous τ_i makes things interesting:

- With homogenous τ_i , all instruments should yield the same τ^{LATE}
- With heterogeneous τ , this need not be true!

With multiple instruments, we get multiple estimates of

 $E[Y_i(1) - Y_i(0)|D_i(1) > D_i(0)]$

Each instrument $Z_i^1, ..., Z_i^K$ will have its own compliers where $D_i(1) > D_i(0)$

With some small tweaks, we can still estimate $\hat{\tau}^{IV}$:

With some small tweaks, we can still estimate $\hat{\tau}^{IV}$:

• We now estimate the first stage as:

$$D_{i} = \alpha + \pi_{1} Z_{i}^{1} + \pi_{2} Z_{i}^{2} + \nu_{i}$$

With some small tweaks, we can still estimate $\hat{\tau}^{IV}$:

• We now estimate the first stage as:

$$D_i = \alpha + \pi_1 Z_i^1 + \pi_2 Z_i^2 + \nu_i$$

• As usual, the second stage is just:

$$Y_i = \alpha + \tau \hat{D}_i + \varepsilon_i$$

With some small tweaks, we can still estimate $\hat{\tau}^{IV}$:

• We now estimate the first stage as:

$$D_i = \alpha + \pi_1 Z_i^1 + \pi_2 Z_i^2 + \nu_i$$

• As usual, the second stage is just:

$$Y_i = \alpha + \tau \hat{D}_i + \varepsilon_i$$

And the 2SLS estimator will be:

$$\hat{\tau}^{2SLS} = \frac{Cov(Y_i, \hat{D}_i)}{Cov(D_i, \hat{D}_i)} = \frac{\pi_1 Cov(Y_i, Z_i^1)}{Cov(D_i, \hat{D}_i)} + \frac{\pi_2 Cov(Y_i, Z_i^2)}{Cov(D_i, \hat{D}_i)}$$

With some small tweaks, we can still estimate $\hat{\tau}^{IV}$:

• We now estimate the first stage as:

$$D_i = \alpha + \pi_1 Z_i^1 + \pi_2 Z_i^2 + \nu_i$$

• As usual, the second stage is just:

$$Y_i = \alpha + \tau \hat{D}_i + \varepsilon_i$$

And the 2SLS estimator will be:

$$\hat{\tau}^{2SLS} = \frac{Cov(Y_i, \hat{D}_i)}{Cov(D_i, \hat{D}_i)} = \frac{\pi_1 Cov(Y_i, Z_i^1)}{Cov(D_i, \hat{D}_i)} + \frac{\pi_2 Cov(Y_i, Z_i^2)}{Cov(D_i, \hat{D}_i)}$$

ightarrow This is just a weighted average of each instrument's $\hat{ au}^{IV}$

What happens with non-binary treatment?

• Binary treatment: there is only $Y_i(1)$ and $Y_i(0)$

What happens with non-binary treatment?

- Binary treatment: there is only $Y_i(1)$ and $Y_i(0)$
- Non-binary treatment: define $S_i \in \{0, 1, ..., \overline{S}\}$
- This has many potential outcomes $Y_i(0), Y_i(1), ..., Y_i(\bar{S})$
- And many causal effects: $Y_i(1) Y_i(0), Y_i(2) Y_i(1)...$

What happens with non-binary treatment?

- Binary treatment: there is only $Y_i(1)$ and $Y_i(0)$
- Non-binary treatment: define $S_i \in \{0, 1, ..., \overline{S}\}$
- This has many potential outcomes $Y_i(0), Y_i(1), ..., Y_i(\bar{S})$
- And many causal effects: $Y_i(1) Y_i(0), Y_i(2) Y_i(1)...$
- In a linear model, these are all the same
- But that's unrealistic
- \rightarrow 2SLS to the rescue!

The average causal response

We can get a weighted average response with some assumptions:

- Independence + exclusion: $\{Y_i(0), Y_i(1), ..., Y_i(\bar{S})\} \perp Z_i$
- First stage: $E[S_i(1) S_i(0)] \neq 0$
- Monotonicity: $S_i(1) S_i(0) \ge 0$ for all *i* (or vice versa)

The average causal response

We can get a weighted average response with some assumptions:

- Independence + exclusion: $\{Y_i(0), Y_i(1), ..., Y_i(\bar{S})\} \perp Z_i$
- First stage: E[S_i(1) − S_i(0)] ≠ 0
- Monotonicity: $S_i(1) S_i(0) \ge 0$ for all i (or vice versa)

Then:

$$\hat{ au}^{IV} = rac{E[Y_i|Z_i=1] - E[Y_i|Z_i=0]}{E[S_i|Z_i=1] - E[S_i|Z_i=0]}
onumber \ = \sum_{s=1}^{\bar{S}} \omega_s E[Y_i(s) - Y_i(s-1)|S_i(1) \ge s \ge S_i(0)]$$

where

$$\omega_s = \frac{\Pr(S_i(1) \ge s > S_i(0))}{\sum_{j=1}^{\bar{S}} \Pr(S_i(1) \ge j > S_i(0))}$$

The average causal response

$$\hat{ au}^{IV} = \sum_{s=1}^{ar{5}} \omega_s E[Y_i(s) - Y_i(s-1)|S_i(1) \ge s \ge S_i(0)]$$

 $\rightarrow \, \hat{\tau}^{IV}$ gives a weighted average of the unit causal response

- → The unit causal response, $E[Y_i(s) Y_i(s-1)|S_i(1) \ge s \ge S_i(0)]$ is the average difference in potential outcomes for compliers at $S_i = s$
- \rightarrow The size of the compliance group is $Pr(S_i(1) \ge s > S_i(0))$

What do we get from the IV?

We've talked through several cases

- Constant τ :
 - $\hat{\tau}^{IV} = \tau^{ATE}$
- Perfect compliance:
 - $\hat{\tau}^{IV} = \tau^{ATE}$
- Heterogeneous treatment effects, one IV:

•
$$\hat{\tau}^{IV} = \tau^{LATE}$$

• Heterogeneous treatment effects, multiple IVs:

•
$$\hat{\tau}^{IV} = \frac{1}{K} \sum_k \omega_k \tau_k^{LATE}$$

• Multiple values of treatment:

•
$$\hat{\tau}^{IV} = \sum_{s=1}^{\bar{S}} \omega_s E[Y_i(s) - Y_i(s-1) | S_i(1) \ge s \ge S_i(0)]$$

We've come a long way from RCTs:

- Took a brief detour through the thicket of SOO
- Started our discussion of SOU

We've come a long way from RCTs:

- Took a brief detour through the thicket of SOO
- Started our discussion of SOU
- \rightarrow **IV** is our first SOU design
 - IV helps us do causal inference with non-random treatment
 - We just need some random leverage over treatment

Taking stock of IV

Under the right assumptions, we can use IV for...

- Eliminating bias due to measurement error
- Eliminating bias due to omitted variables
- Eliminating bias due to simultaneity
- Translating from ITT to LATE
- Estimating (L)ATEs

The trick is satisfying the exclusion restriction!

TL;DR:

- 1 Instrumental variables are very powerful
- 2 We can use them to handle non-compliance
- **8** More generally, the IV estimates LATE (not ATE) with heterogeneity

Topics:

• Panel data I

Reading: Jensen (2007). You can skip:

• II: The model