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From last time: applications of IV

Zi is a valid instrument when the following are satisfied:

1 First stage: Cov(Zi ,Di ) ∕= 0

2 Exclusion restriction: Cov(Zi , εi ) = 0

When we have these two conditions, we can...:

• Handle OVB

• Handle measurement error
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Opening Pandora’s box

With τi = τ for all i , life is “easy”:

• All we need is a first stage...

• ... and an exclusion restriction ()...

• ... and we are in business!

What happens with heterogeneous treatment effects?

→ What are we actually recovering with τ̂ IV ?

• Recall that we set up IV with the following decomposition:

Di = Biεi + Ci

• For the IV to work, it must be correlated with Ci but not Biεi

• But! Zi is just generating variation in part of Ci

• If this part affects Yi differently than the non-moved bit, τ̂ ∕= τATE
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A more general IV setup

Let’s generalize our setup a bit:

• Yi (Di ,Zi ) is the outcome as a function of both treatment and the
instrument

• Yi (Di = 1,Zi )− Yi (Di = 0,Zi ):
Causal effect of treatment given your instrument

• Yi (Di ,Zi = 1)− Yi (Di ,Zi = 0):
Causal effect of your instrument given your treatment status
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A more general IV setup

In our intended causal chain, Zi → Di → Yi :

• We want notation to think about Zi having a causal effect on Di .
Define:

• Di (Zi = 1) or just Di (1) is treatment status when Zi = 1

• Di (Zi = 0) or just Di (0) is treatment status when Zi = 0

• Observed treatment status is just:

Di = Di (0) + (Di (1)− Di (0))Zi = α+ γiZi + νi

(This should look familiar!)

• As before, α = E [Di (0)]

• But now γi ≡ (Di (1)−Di (0)): the i-specific causal effect of Zi on Di

→ We can’t observe both Di (1) and Di (0) (why?)

→ We can hope for the average causal effect of Zi on Di = E [γi ]
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With this framework, we need some (new) assumptions

We’ll make four assumptions:

1 First stage: E [Di |Zi = 1] ∕= E [Di |Zi = 0] for some i

• This is the same as before: Cov(Di ,Zi ) ∕= 0

2 Random assignment: Yi (Di ,Zi ),Di (1),Di (0) ⊥ Zi

3 Exclusion restriction: Yi (Zi = 1,D) = Yi (Zi = 0,D) for D ∈ {0, 1}

4 Monotonicity: Di (Zi = 1)− Di (Zi = 0) ≥ 0 for all i
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Random assignment and the exclusion restriction

What used to just be the exclusion restriction, Cov(Zi , εi ) = 0 is now:

(A) Independence: Yi (Di ,Zi ),Di (1),Di (0) ⊥ Zi

• The reduced form, a regression of Yi on Zi , is identified:

E [Yi |Zi = 1]− E [Yi |Zi = 0]

= E [Yi (Di (Zi = 1),Zi = 1)|Zi = 1] = E [Yi (Di (Zi = 0),Zi = 0)|Zi = 0]

= E [Yi (Di (Zi = 1), 1)− Yi (Di (Zi = 0), 0)]

• The first stage, a regression of Di on Zi , is identified:

E [Di |Zi = 1]− E [Di |Zi = 0]

= E [Di (Zi = 1)|Zi = 1]− E [Di (Zi = 0)|Zi = 0]

= E [Di (Zi = 1)− Di (Zi = 0)]

(B) Exclusion restriction: Yi (Zi = 1,Di ) = Yi (Zi = 0,Di )
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Random assignment and the exclusion restriction

What used to just be the exclusion restriction, Cov(Zi , εi ) = 0 is now:

(A) Independence: Yi (Di ,Zi ),Di (1),Di (0) ⊥ Zi

(B) Exclusion restriction: Yi (Zi = 1,Di ) = Yi (Zi = 0,Di )

• Zi only affects Yi through Di

• This lets us write:

Yi (1) = Yi (Di = 1,Zi = 1) = Yi (Di = 1,Zi = 0)

Yi (0) = Yi (Di = 0,Zi = 1) = Yi (Di = 0,Zi = 0)

We can combine these two to express:

Yi = Yi (Di = 0,Zi ) + (Yi (Di = 1,Zi )− Yi (Di = 0,Zi ))Di

= Yi (0) + (Yi (1)− Yi (0))Di
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With this framework, we need some (new) assumptions

We’ll make four assumptions:

1 First stage: E [Di |Zi = 1] ∕= E [Di |Zi = 0] for some i

• This is the same as before: Cov(Di ,Zi ) ∕= 0

2 Independence: Yi (Di ,Zi ),Di (1),Di (0) ⊥ Zi

3 Exclusion restriction: Yi (Zi = 1,Di ) = Yi (Zi = 0,Di )

4 Monotonicity: Di (Zi = 1)− Di (Zi = 0) ≥ 0 for all i
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Monotonicity

This new assumption says:

Di (Zi = 1)− Di (Zi = 0) ≥ 0 for all i

• While Zi need not move everybody’s treatment status...

• ... all affected units move in the same way

• Either Di (Zi = 1) ≥ Di (Zi = 0) for all i

• Or Di (Zi = 1) ≤ Di (Zi = 0) for all i

• Moving from Zi = 0 to Zi = 0 doesn’t move some units from Di = 0
to Di = 1 and others from Di = 1 to Di = 0
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What do these assumptions buy us?

As always, we’d (ideally) estimate the following regression:

Yi = α+ τDi + εi

Since Di is not randomly assigned, we also need an instrument, Zi

Recall that we can estimate τ̂ IV using two regressions:

Di = α+ γZi + ηi󰁿 󰁾󰁽 󰂀
first stage

and
Yi = α+ θZi + νi󰁿 󰁾󰁽 󰂀

reduced form

Then

τ̂ IV =
θ̂

γ̂
=

E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Di |Zi = 1]− E [Di |Zi = 0]
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What do these assumptions buy us?

Let’s decompose τ̂ IV = E [Yi |Zi=1]−E [Yi |Zi=0]
E [Di |Zi=1]−E [Di |Zi=0] :

E [Yi |Zi = 1] = E [Yi (0) + (Yi (1)− Yi (0))Di |Zi = 1]󰁿 󰁾󰁽 󰂀
exclusion restriction

= E [Yi (0) + (Yi (1)− Yi (0))Di (Zi = 1)]󰁿 󰁾󰁽 󰂀
independence

and
E [Yi |Zi = 0] = E [Yi (0) + (Yi (1)− Yi (0))Di |Zi = 0]󰁿 󰁾󰁽 󰂀

exclusion restriction

= E [Yi (0) + (Yi (1)− Yi (0))Di (Zi = 0)]󰁿 󰁾󰁽 󰂀
independence
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What do these assumptions buy us?

Taken together, these two yield

E [Yi |Zi = 1]− E [Yi |Zi = 0] = E [(Yi (1)− Yi (0))(Di (1)− Di (0))]

= E [Yi (1)− Yi (0)|Di (1) > Di (0)]Pr(Di (1) > Di (0))󰁿 󰁾󰁽 󰂀
monotonicity

where E [Yi (1)− Yi (0) is some kind of treatment effect
|Di (1) > Di (0)] : for compliers only
Pr(Di (1) > Di (0)): share of compliers in the population.

By the same logic:

E [Di |Zi = 1]− E [Di |Zi = 0] = E [Di (1)− Di (0)]󰁿 󰁾󰁽 󰂀
independence

= Pr(Di (1) > Di (0))󰁿 󰁾󰁽 󰂀
monotonicity

τ̂ IV =
E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Di |Zi = 1]− E [Di |Zi = 0]
= E [Yi (1)− Yi (0)|Di (1) > Di (0)]
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What happens without monotonicity?

Monotonicity, Di (Zi = 1)− Di (Zi = 0) ≥ 0 for all i , is a new assumption

• Without it, we have Di (Zi = 1)− Di (Zi = 0) < 0 for some i

• This breaks our ability to estimate τLATE using τ̂ IV

• We had:

E [Yi |Zi = 1]− E [Yi |Zi = 0] = E [(Yi (1)− Yi (0))(Di (1)− Di (0)]

• But without monotonicity:

E [Yi |Zi = 1]− E [Yi |Zi = 0]

= E [Yi (1)− Yi (0)|Di (1) > Di (0)]Pr(Di (1) > Di (0))

−E [Yi (1)− Yi (0)|Di (1) < Di (0)]Pr(Di (1) < Di (0))

→ We can’t deal with this

• τ i could be > 0 for all i , but we could mistakenly estimate 0 effect

→ We would have defiers ()
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E [Yi |Zi = 1]− E [Yi |Zi = 0]

= E [Yi (1)− Yi (0)|Di (1) > Di (0)]Pr(Di (1) > Di (0))

−E [Yi (1)− Yi (0)|Di (1) < Di (0)]Pr(Di (1) < Di (0))

→ We can’t deal with this

• τ i could be > 0 for all i , but we could mistakenly estimate 0 effect

→ We would have defiers ()
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τ̂ IV = E [Yi(1)− Yi(0)|Di(1) > Di(0)]

What is this “conditional on Di (1) > Di (0)” beast?

• τ̂ IV estimates the (L)ATE, conditional on Di (1) > Di (0)

• Di (1) > Di (0) means Zi moves Di

• We can divide the world into three groups:

1

Di (1) > Di (0): Compliers

2

Di (1) = Di (0) = 1: Always-takers

3

Di (1) = Di (0) = 0: Never-takers

→ Note that Zi doesn’t affect Di for never-takers or always-takers

→ The instrument is useless for them

→ We can’t learn about their treatment effects!

→ (They essentially have no first stage)

→ We can estimate LATEs for compliers only
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Non-compliance throwback

We looked at several scenarios of non-compliance:

• If only T can non-comply, we can show:

τ̂ IV =
E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Di |Zi = 1]
= E [Yi (1)−Yi (0)|Di = 1] = τLATE

• If only C can non-comply, we can show:

τ̂ IV =
E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Di |Zi = 1]
= E [Yi (1)−Yi (0)|Di = 0] = τLATE
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Non-compliance throwback

If both T and C can non-comply:

τ̂ IV =
E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Di |Zi = 1]− E [Di |Zi = 0]

= E [Yi (1)− Yi (0)|Di (1) > Di (0)] = τLATE

Why does this work?

• We have an as-good-as-random estimate, E [Yi |Zi = 1]−E [Yi |Zi = 0]

• We need to scale this by the complier proportion
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Counting compliers

The fraction of compliers is just:

πC = Pr(Di (1) > Di (0)) = E [Di (1)− Di (0)]

= E [Di (1)]− E [Di (0)]

= E [Di |Zi = 1]− E [Di |Zi = 0]

We can also count the fraction of the treatment group which complies:

Pr(Di (1) > Di (0)|Di = 1) =
Pr(Di = 1|Di (1)) > Di (0))Pr(Di (1) > Di (0)

Pr(Di = 1)

=
Pr(Zi = 1)(E [Di |Zi = 1]− E [Di |Zi = 0])

Pr(Di = 1)
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Who are the LATE compliers?

• We can’t pick out individual compliers

• We can just count them

• But we can actually learn something more about them!

Let’s ask: are compliers more likely to be men?

Pr(Malei = 1|Di (1) > Di (0)

Pr(Malei = 1)

=
Pr(Di (1) > Di (0)|Malei = 1)

Pr(Di (1) > Di (0))

=
E [Di |Zi = 1,Malei = 1− E [Di |Zi = 0,Malei = 1]

E [Di |Zi = 1]− E [Di |Zi = 0]

→ This is just the first stage for men divided by the overall first stage!
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What happens if we have multiple instruments?

Heterogeneous τi makes things interesting:

• With homogenous τi , all instruments should yield the same τLATE

• With heterogeneous τ , this need not be true!

With multiple instruments, we get multiple estimates of

E [Yi (1)− Yi (0)|Di (1) > Di (0)]

Each instrument Z 1
i , ...Z

K
i will have its own compliers where Di (1) > Di (0)
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What happens if we have multiple instruments?

With some small tweaks, we can still estimate τ̂ IV :

• We now estimate the first stage as:

Di = α+ π1Z
1
i + π2Z

2
i + νi

• As usual, the second stage is just:

Yi = α+ τ D̂i + εi

• And the 2SLS estimator will be:

τ̂2SLS =
Cov(Yi , D̂i )

Cov(Di , D̂i )
=

π1Cov(Yi ,Z
1
i )

Cov(Di , D̂i )
+

π2Cov(Yi ,Z
2
i )

Cov(Di , D̂i )

→ This is just a weighted average of each instrument’s τ̂ IV
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Non-binary treatments

What happens with non-binary treatment?

• Binary treatment: there is only Yi (1) and Yi (0)

• Non-binary treatment: define Si ∈ {0, 1, ..., S̄}

• This has many potential outcomes Yi (0),Yi (1), ...,Yi (S̄)

• And many causal effects: Yi (1)− Yi (0),Yi (2)− Yi (1)...

• In a linear model, these are all the same

• But that’s unrealistic

→ 2SLS to the rescue!

PPHA 34600 Program Evaluation Lecture 10 23 / 30



Non-binary treatments

What happens with non-binary treatment?

• Binary treatment: there is only Yi (1) and Yi (0)

• Non-binary treatment: define Si ∈ {0, 1, ..., S̄}

• This has many potential outcomes Yi (0),Yi (1), ...,Yi (S̄)

• And many causal effects: Yi (1)− Yi (0),Yi (2)− Yi (1)...

• In a linear model, these are all the same

• But that’s unrealistic

→ 2SLS to the rescue!

PPHA 34600 Program Evaluation Lecture 10 23 / 30



Non-binary treatments

What happens with non-binary treatment?

• Binary treatment: there is only Yi (1) and Yi (0)

• Non-binary treatment: define Si ∈ {0, 1, ..., S̄}

• This has many potential outcomes Yi (0),Yi (1), ...,Yi (S̄)

• And many causal effects: Yi (1)− Yi (0),Yi (2)− Yi (1)...

• In a linear model, these are all the same

• But that’s unrealistic

→ 2SLS to the rescue!

PPHA 34600 Program Evaluation Lecture 10 23 / 30



The average causal response

We can get a weighted average response with some assumptions:

• Independence + exclusion: {Yi (0),Yi (1), ...Yi (S̄)} ⊥ Zi

• First stage: E [Si (1)− Si (0)] ∕= 0

• Monotonicity: Si (1)− Si (0) ≥ 0 for all i (or vice versa)

Then:

τ̂ IV =
E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Si |Zi = 1]− E [Si |Zi = 0]

=
S̄󰁛

s=1

ωsE [Yi (s)− Yi (s − 1)|Si (1) ≥ s ≥ Si (0)]

where

ωs =
Pr(Si (1) ≥ s > Si (0)

󰁓S̄
j=1 Pr(Si (1) ≥ j > Si (0))

PPHA 34600 Program Evaluation Lecture 10 24 / 30



The average causal response

We can get a weighted average response with some assumptions:

• Independence + exclusion: {Yi (0),Yi (1), ...Yi (S̄)} ⊥ Zi

• First stage: E [Si (1)− Si (0)] ∕= 0

• Monotonicity: Si (1)− Si (0) ≥ 0 for all i (or vice versa)

Then:

τ̂ IV =
E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Si |Zi = 1]− E [Si |Zi = 0]

=
S̄󰁛

s=1

ωsE [Yi (s)− Yi (s − 1)|Si (1) ≥ s ≥ Si (0)]

where

ωs =
Pr(Si (1) ≥ s > Si (0)

󰁓S̄
j=1 Pr(Si (1) ≥ j > Si (0))

PPHA 34600 Program Evaluation Lecture 10 24 / 30



The average causal response

τ̂ IV =
S̄󰁛

s=1

ωsE [Yi (s)− Yi (s − 1)|Si (1) ≥ s ≥ Si (0)]

→ τ̂ IV gives a weighted average of the unit causal response

→ The unit causal response, E [Yi (s)− Yi (s − 1)|Si (1) ≥ s ≥ Si (0)] is
the average difference in potential outcomes for compliers at Si = s

→ The size of the compliance group is Pr(Si (1) ≥ s > Si (0)
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What do we get from the IV?

We’ve talked through several cases

• Constant τ :

• τ̂ IV = τATE

• Perfect compliance:

• τ̂ IV = τATE

• Heterogeneous treatment effects, one IV:

• τ̂ IV = τLATE

• Heterogeneous treatment effects, multiple IVs:

• τ̂ IV = 1
K

󰁓
k ωkτ

LATE
k

• Multiple values of treatment:

• τ̂ IV =
󰁓S̄

s=1 ωsE [Yi (s)− Yi (s − 1)|Si (1) ≥ s ≥ Si (0)]
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Taking stock of IV

We’ve come a long way from RCTs:

• Took a brief detour through the thicket of SOO

• Started our discussion of SOU

→ IV is our first SOU design

• IV helps us do causal inference with non-random treatment

• We just need some random leverage over treatment
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Taking stock of IV

Under the right assumptions, we can use IV for...

• Eliminating bias due to measurement error

• Eliminating bias due to omitted variables

• Eliminating bias due to simultaneity

• Translating from ITT to LATE

• Estimating (L)ATEs

The trick is satisfying the exclusion restriction!
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Recap

TL;DR:

1 Instrumental variables are very powerful

2 We can use them to handle non-compliance

3 More generally, the IV estimates LATE (not ATE) with heterogeneity
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For next class

Topics:

• Panel data I

Reading: Jensen (2007). You can skip:

• II: The model

PPHA 34600 Program Evaluation Lecture 10 30 / 30


