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From last time: applications of |V

Z; is a valid instrument when the following are satisfied:

@ First stage: Cov(Z;,Dj) #0
@® Exclusion restriction: Cov(Z;,e;) =0
When we have these two conditions, we can...:

e Handle OVB

e Handle measurement error
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Opening Pandora’s box

With 7; = 7 for all i, life is “easy”:
e All we need is a first stage...

e ... and an exclusion restriction ()...

e ... and we are in business!
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With 7; = 7 for all i, life is “easy”:
e All we need is a first stage...

e ... and an exclusion restriction ()...

e ... and we are in business!

What happens with heterogeneous treatment effects?

— What are we actually recovering with 7/V'?
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Opening Pandora’s box

With 7; = 7 for all i, life is “easy”:
e All we need is a first stage...

e ... and an exclusion restriction ()...

e ... and we are in business!

What happens with heterogeneous treatment effects?

— What are we actually recovering with 7/V'?
e Recall that we set up IV with the following decomposition:

D; = Bie; + G
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Opening Pandora’s box

With 7; = 7 for all i, life is “easy”:

e All we need is a first stage...
e ... and an exclusion restriction ()...
e ... and we are in business!

What happens with heterogeneous treatment effects?

— What are we actually recovering with 7/V'?

e Recall that we set up IV with the following decomposition:

D; = Bie; + G

e For the IV to work, it must be correlated with C; but not B;g;

e But! Z; is just generating variation in part of C;
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Opening Pandora’s box

With 7; = 7 for all i, life is “easy”:

e All we need is a first stage...
e ... and an exclusion restriction ()...
e ... and we are in business!

What happens with heterogeneous treatment effects?

— What are we actually recovering with 7/V'?

e Recall that we set up IV with the following decomposition:

D; = Bie; + G

e For the IV to work, it must be correlated with C; but not B;e;
e But! Z; is just generating variation in part of C;
o If this part affects Y; differently than the non-moved bit, 7 # 7ATE
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A more general IV setup

Let's generalize our setup a bit:

e Yi(Dj, Z;) is the outcome as a function of both treatment and the
instrument
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A more general IV setup

Let's generalize our setup a bit:

e Yi(Dj, Z;) is the outcome as a function of both treatment and the
instrument

e Yi(D;=1,2) - Yi(D; =0, Z):
Causal effect of treatment given your instrument
e Yi(D;, Zi =1) - Y;i(D;, Z; = 0):
Causal effect of your instrument given your treatment status

PPHA 34600 Program Evaluation Lecture 10 3 /30



A more general IV setup

In our intended causal chain, Z; — D; — Y;:

e We want notation to think about Z; having a causal effect on D;.
Define:

° D,-(Z,‘

=1) or just D;(1) is treatment status when Z; =1
e D;(Z; =0) or just D;(0) is treatment status when Z; =0
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A more general IV setup

In our intended causal chain, Z; — D; — Y;:

e We want notation to think about Z; having a causal effect on D;.
Define:

e D;(Z; =1) or just D;(1) is treatment status when Z; =1
e D;(Z; =0) or just D;(0) is treatment status when Z; =0

e Observed treatment status is just:

D; = D;i(0) + (Di(1) — Di(0))Zi = a + i Zi +v;
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A more general IV setup

In our intended causal chain, Z; — D; — Y;:

e We want notation to think about Z; having a causal effect on D;.
Define:

e D;(Z; =1) or just D;(1) is treatment status when Z; =1
e D;(Z; =0) or just D;(0) is treatment status when Z; =0

e Observed treatment status is just:

D; = D;i(0) + (Di(1) — Di(0))Zi = a + i Zi +v;

(This should look familiar!)
e As before, « = E[D;(0)]
e But now v; = (D;(1) — D;j(0)): the i-specific causal effect of Z; on D;
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A more general IV setup

In our intended causal chain, Z; — D; — Y;:

e We want notation to think about Z; having a causal effect on D;.
Define:

e D;(Z; =1) or just D;(1) is treatment status when Z; =1
e D;(Z; =0) or just D;(0) is treatment status when Z; =0

e Observed treatment status is just:

D; = D;i(0) + (Di(1) — Di(0))Zi = a + i Zi +v;

(This should look familiar!)
e As before, « = E[D;(0)]
e But now v; = (D;(1) — D;j(0)): the i-specific causal effect of Z; on D;
— We can't observe both D;(1) and D;(0) (why?)
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A more general IV setup

In our intended causal chain, Z; — D; — Y;:

e We want notation to think about Z; having a causal effect on D;.
Define:

e D;(Z; =1) or just D;(1) is treatment status when Z; =1
e D;(Z; =0) or just D;(0) is treatment status when Z; =0

e Observed treatment status is just:

D; = D;i(0) + (Di(1) — Di(0))Zi = a + i Zi +v;

(This should look familiar!)
e As before, « = E[D;(0)]
e But now v; = (D;(1) — D;j(0)): the i-specific causal effect of Z; on D;
— We can't observe both D;(1) and D;(0) (why?)
— We can hope for the average causal effect of Z; on D; = E[;]
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With this framework, we need some (new) assumptions

We'll make four assumptions:
@ First stage: E[D;|Z; = 1| # E[D;|Z; = 0] for some i
o This is the same as before: Cov(D;, Z;) #0
(2]

3]
4]
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With this framework, we need some (new) assumptions

We'll make four assumptions:
@ First stage: E[D;|Z; = 1| # E[D;|Z; = 0] for some i
o This is the same as before: Cov(D;, Z;) #0
® Independence: Y;(D;, Z;), Di(1), D;(0) L Z;
©® Exclusion restriction: Y;(Z; =1,D;) = Yi(Z; =0, D;)
(4]
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Random assignment and the exclusion restriction

What used to just be the exclusion restriction, Cov(Z;,e;) = 0 is now:
(A) Independence: Y;(D;, Z;), Di(1), D;(0) L Z;
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Random assignment and the exclusion restriction

What used to just be the exclusion restriction, Cov(Z;,e;) = 0 is now:
(A) Independence: Y;(D;, Z;), Di(1), D;(0) L Z;
e The reduced form, a regression of Y; on Z;, is identified:
E[Yi|Zi =1] - E[Yi|Zi = 0]
= E[Yi(Di(Z; = 1), Z; = 1)|Z; = 1] = E[Y{(Di(Z; = 0), Z; = 0)|Z; = 0]
= E[Yi(Di(Zi =1),1) = Yi(Di(Z; = 0),0)]
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Random assignment and the exclusion restriction

What used to just be the exclusion restriction, Cov(Z;,e;) = 0 is now:
(A) Independence: Y;(D;, Z;), Di(1), D;(0) L Z;
e The reduced form, a regression of Y; on Z;, is identified:
E[Yi|Zi =1] - E[Yi|Zi = 0]
= E[Y{(Di(Z; =1),Z =1)|Z; = 1] = E[Yi(Di(Z; = 0), Z; = 0)|Z; = 0]
= E[Yi(Di(Zi =1),1) = Yi(Di(Z; = 0),0)]

e The first stage, a regression of D; on Z;, is identified:
E[Di|Zi = 1] — E[Dj|Z; = 0]
= E[Di(Z =1)|Z =1] - E[Di(Z; = 0)|Z; = Q]
= E[Di(Zi = 1) — Di(Z; = 0)]
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Random assignment and the exclusion restriction

What used to just be the exclusion restriction, Cov(Z;,e;) = 0 is now:
(A) Independence: Y;(D;, Z;), Di(1), D;(0) L Z;
e The reduced form, a regression of Y; on Z;, is identified:
E[Yi|Zi =1] - E[Yi|Zi = 0]
= E[Y{(Di(Z; =1),Z =1)|Z; = 1] = E[Yi(Di(Z; = 0), Z; = 0)|Z; = 0]
= E[Yi(Di(Zi =1),1) = Yi(Di(Z; = 0),0)]

e The first stage, a regression of D; on Z;, is identified:
E[Di|Zi = 1] — E[Dj|Z; = 0]
= E[Di(Z =1)|Z =1] - E[Di(Z; = 0)|Z; = Q]
= E[Di(Zi = 1) — Di(Z; = 0)]

(B) Exclusion restriction: Y;(Z; =1,D;) = Yi(Z =0, D;)
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Random assignment and the exclusion restriction
What used to just be the exclusion restriction, Cov(Z;,e;) = 0 is now:

(A) Independence: Y;(D;, Z;), Di(1), D;(0) L Z;
(B) Exclusion restriction: Y;(Z; =1,D;) = Yi(Z =0, D;)
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Random assignment and the exclusion restriction

What used to just be the exclusion restriction, Cov(Z;,e;) = 0 is now:
(A) Independence: Y;(D;, Z;), Di(1), D;(0) L Z;
(B) Exclusion restriction: Y;(Z; =1,D;) = Yi(Z =0, D;)

e Z; only affects Y; through D;
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Random assignment and the exclusion restriction

What used to just be the exclusion restriction, Cov(Z;,e;) = 0 is now:
(A) Independence: Y;(D;, Z;), Di(1), D;(0) L Z;
(B) Exclusion restriction: Y;(Z; =1,D;) = Yi(Z =0, D;)

e Z; only affects Y; through D;
e This lets us write:

Yi(1) = Yi(D; =1,Z =1) = Y{(D; =1,Z = 0)

Y:(0) = Y{(D; =0,Z =1) = Y{(D; =0,Z = 0)
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Random assignment and the exclusion restriction

What used to just be the exclusion restriction, Cov(Z;,e;) = 0 is now:
(A) Independence: Y;(D;, Z;), Di(1), D;(0) L Z;
(B) Exclusion restriction: Y;(Z; =1,D;) = Yi(Z =0, D;)

e Z; only affects Y; through D;
e This lets us write:

Yi(1) = Yi(D; =1,Z =1) = Y{(D; =1,Z = 0)

Y:(0) = Y{(D; =0,Z =1) = Y{(D; =0,Z = 0)

We can combine these two to express:
Y; = Yi(D; =0,Z)+ (Yi(D;i = 1,Z) — Yi(Di = 0, Z})) D;

= Yi(0) + (Yi(1) — Yi(0))D;
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With this framework, we need some (new) assumptions

We'll make four assumptions:
@ First stage: E[D;|Z; = 1| # E[D;|Z; = 0] for some i
o This is the same as before: Cov(D;, Z;) #0
® Independence: Y;(D;, Z;), Di(1), D;(0) L Z;
©® Exclusion restriction: Y;(Z; =1,D;) = Yi(Z; =0, D;)
@ Monotonicity: D;(Z; =1) — Di(Z; =0) > 0 for all i
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Monotonicity

This new assumption says:

D,'(Z,' == 1) - D,'(Z,‘ = 0) > 0 for all i

e While Z; need not move everybody's treatment status...

e ... all affected units move in the same way
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Monotonicity

This new assumption says:

D,'(Z,' == 1) - D,'(Z,‘ = 0) > 0 for all i

While Z; need not move everybody's treatment status...

.. all affected units move in the same way
Either D;j(Z; = 1) > D;i(Z; = 0) for all i
Or D,'(Z,' == 1) < D,'(Z,' = 0) for all i

Moving from Z; = 0 to Z; = 0 doesn't move some units from D; = 0
to D; = 1 and others from D; =1to D; =0
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With this framework, we need some (new) assumptions

We'll make four assumptions:
@ First stage: E[D;|Z; = 1| # E[D;|Z; = 0] for some i
o This is the same as before: Cov(D;, Z;) #0
® Independence: Y;(D;, Z;), Di(1), D;(0) L Z;
©® Exclusion restriction: Y;(Z; =1,D) = Y;(Z; =0,D) for D € {0,1}
@ Monotonicity: D;(Z; =1) — Di(Z; =0) > 0 for all i
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What do these assumptions buy us?
As always, we'd (ideally) estimate the following regression:
Yi=a+7Dj+c¢;

Since D; is not randomly assigned, we also need an instrument, Z;
Recall that we can estimate 7!V using two regressions:

Di=a+~Zi +ni

first stage
and
Yi=a+0Z + v
reduced form
Then

_ E[YilZzi =1] - E[Yi|Z; = 0]
~ E[DIZ =1 - EIDi|Z = 0]

2| >
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What do these assumptions buy us?

v _ E[Yi|Zi=1]-E[YZ=0]
E|D;|Z=1]—-E[Di|Z=0]-

Let's decompose 7

E[YilZi = 1] = E[Y;(0) + (Yi(1) — Yi(0)) Di|Z; = 1]
exclusion restriction

= EIVi(0) + (¥i(1) — Yi(0)) Di(Zi = 1)]

independence

and
E[YilZi = 0] = E[Y;(0) + (Yi(1) — Yi(0)) Di| Z; = 0]

~
exclusion restriction

= E[Yi(0) + (Yi(1) — Yi(0)) Di(Zi = 0)]

independence
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What do these assumptions buy us?

Taken together, these two yield
E[YilZ; = 1] — E[Yi|Z; = 0] = E[(Yi(1) — Y;(0))(Di(1) — Di(0))]
= E[Yi(1) = Yi(0)| Di(1) > Di(0)]Pr(Di(1) > D;(0))

monotonicity

where E[Y;(1) — Y;(0) is some kind of treatment effect
|Di(1) > D;(0)] : for compliers only
Pr(Di(1) > D;(0)): share of compliers in the population.
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What do these assumptions buy us?

Taken together, these two yield
E[YilZ; = 1] — E[Yi|Z; = 0] = E[(Yi(1) — Y;(0))(Di(1) — Di(0))]
= E[Yi(1) = Yi(0)| Di(1) > Di(0)]Pr(Di(1) > D;(0))

monotonicity
where E[Y;(1) — Y;(0) is some kind of treatment effect
|Di(1) > D;(0)] : for compliers only
Pr(Di(1) > D;(0)): share of compliers in the population.
By the same logic:

E[Di|Z; = 1] — E[Dj|Z; = 0] = E[D;(1) — D;(0)]

independence
— Pr(Di(1) > D;(0))

monotonicity
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What do these assumptions buy us?

Taken together, these two yield
E[YilZ; = 1] — E[Yi|Z; = 0] = E[(Yi(1) — Y;(0))(Di(1) — Di(0))]
= E[Yi(1) = Yi(0)| Di(1) > Di(0)]Pr(Di(1) > D;(0))

monotonicity
where E[Y;(1) — Y;(0) is some kind of treatment effect
|Di(1) > D;(0)] : for compliers only
Pr(Di(1) > D;(0)): share of compliers in the population.
By the same logic:

E[Di|Z; = 1] — E[Dj|Z; = 0] = E[D;(1) — D;(0)]

independence
= Pr(D;(1) > D;(0))
monotonicity
v ElilZi=1- E[Vi|Z: =]
v
- =E Y, 1) — Y, D,' 1 D,'
EDIZ — 11— bz o = EY(D ~ Y{@IDi(1) > D)
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What happens without monotonicity?

Monotonicity, D;j(Z; = 1) — D;(Z; = 0) > 0 for all i, is a new assumption
e Without it, we have D;(Z; = 1) — D;i(Z; = 0) < 0 for some i

LATE v

e This breaks our ability to estimate 7 using 7/
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What happens without monotonicity?

Monotonicity, D;j(Z; = 1) — D;(Z; = 0) > 0 for all i, is a new assumption
e Without it, we have D;(Z; = 1) — D;i(Z; = 0) < 0 for some i

LATE v

e This breaks our ability to estimate 7 using 7/

e We had:
ElYj|Zi = 1] — E[Y;|Z; = 0] = E[(Yi(1) — Yi(0))(Di(1) — D;(0)]

e But without monotonicity:
E[YZ; = 1] - E[Y[Z; = 0
= E[Yi(1) — Yi(0)[ Di(1) > D;(0)]Pr(Di(1) > D;(0))
—E[Y;(1) = Yi(0)|Di(1) < Di(0)]Pr(Di(1) < D;(0))
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What happens without monotonicity?

Monotonicity, D;j(Z; = 1) — D;(Z; = 0) > 0 for all i, is a new assumption
e Without it, we have D;(Z; = 1) — D;i(Z; = 0) < 0 for some i

LATE v

e This breaks our ability to estimate 7 using 7/

e We had:
ElYj|Zi = 1] — E[Y;|Z; = 0] = E[(Yi(1) — Yi(0))(Di(1) — D;(0)]

e But without monotonicity:
E[YIZ = 1] - E[Yi|Z = 0]
= E[Yi(1) — Yi(0)| Di(1) > Di(0)]Pr(Di(1) > D;(0))
—E[Yi(1) = Yi(0)|Di(1) < D;i(0)]Pr(Di(1) < D;(0))
— We can't deal with this

e 7/ could be > 0 for all i, but we could mistakenly estimate 0 effect
— We would have defiers ()
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#V' = E[Y;(1) — Y;(0)|D;(1) > D;(0)]

What is this “conditional on D;(1) > D;(0)" beast?

o #!V estimates the (L)ATE, conditional on D;(1) > D;(0)
e Di(1) > Di(0) means Z; moves D;
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#V' = E[Y;(1) — Y;(0)|D;(1) > D;(0)]

What is this “conditional on D;(1) > D;(0)" beast?

o #!V estimates the (L)ATE, conditional on D;(1) > D;(0)
e Di(1) > Di(0) means Z; moves D;
e We can divide the world into three groups:

@ D;(1) > D;(0): Compliers

® D;(1) = D;i(0) = 1: Always-takers

© D;(1) = D;(0) = 0: Never-takers
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#V' = E[Y;(1) — Y;(0)|D;(1) > D;(0)]

What is this “conditional on D;(1) > D;(0)" beast?

o #!V estimates the (L)ATE, conditional on D;(1) > D;(0)
e Di(1) > Di(0) means Z; moves D;
e We can divide the world into three groups:

@ D;(1) > D;(0): Compliers

® D;(1) = D;i(0) = 1: Always-takers

© D;(1) = D;(0) = 0: Never-takers

Note that Z; doesn't affect D; for never-takers or always-takers

The instrument is useless for them

N
N
— We can’t learn about their treatment effects!
— (They essentially have no first stage)

N

We can estimate LATEs for compliers only
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Non-compliance throwback

We looked at several scenarios of non-compliance:

e If only T can non-comply, we can show:

v _ EIViIZi = 11— E[Yi|Z = 0]

E[D;|Z; = 1] = E[Y;(1)-Y;(0)|D; = 1] = 7ATE

e If only C can non-comply, we can show:

AV _ ElYi|Zi = 1] — E[Y;|Z = 0]
E[D;|Z; = 1]

= E[Yi(1)-Y)(0)|D; = 0] = 7ATE
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Non-compliance throwback

If both T and C can non-comply:

AV _ E[YilZzi = 1] — E[Yi|Z; = (]
E[Dj|Z; = 1] — E[D;|Z; = Q]

= E[Yi(1) - Yi(0)|Di(1) > D;(0)] = 74TF
Why does this work?
e We have an as-good-as-random estimate, E[Y;|Z; = 1] — E[Y;|Z; = 0]

e We need to scale this by the complier proportion
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Counting compliers

The fraction of compliers is just:
7€ = Pr(D;(1) > D;(0)) = E[Di(1) — D;(0)]

= E[Di(1)] — E[Di(0)]
— E[D;|Z: = 1] - E[D;|Z: = 0]
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Counting compliers

The fraction of compliers is just:
7€ = Pr(D;(1) > D;(0)) = E[Di(1) — D;(0)]

= E[Di(1)] — E[Di(0)]
— E[D;|Z: = 1] - E[D;|Z: = 0]

We can also count the fraction of the treatment group which complies:

PO > Di(0)|Ds — 1) — PO =11Di(1)) > Di(©)Pr(Di(1) > Di(0)

Pr(D,- = ]_)
_ Pr(Z = 1)(E[D}|Z: = 1] - E[Di|Z; = 0])
N Pr(D; = 1)
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Who are the LATE compliers?

e We can't pick out individual compliers
e We can just count them

e But we can actually learn something more about them!

Let's ask: are compliers more likely to be men?
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Who are the LATE compliers?

e We can't pick out individual compliers
e We can just count them

e But we can actually learn something more about them!

Let's ask: are compliers more likely to be men?

Pr(Male; = 1|D:(1) > D;(0)
Pr(Male; = 1)
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Who are the LATE compliers?

e We can't pick out individual compliers
e We can just count them

e But we can actually learn something more about them!

Let's ask: are compliers more likely to be men?

Pr(Male; = 1|D:(1) > D;(0)
Pr(Male; = 1)

. PI’(D,‘(].) > D,-(0)|Ma/e,- = 1)
N Pr(D;(1) > D;(0))
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Who are the LATE compliers?

e We can't pick out individual compliers
e We can just count them

e But we can actually learn something more about them!

Let's ask: are compliers more likely to be men?

Pr(Male; = 1|D:(1) > D;(0)
Pr(Male; = 1)

. PI’(D,‘(].) > D,-(0)|Ma/e,- = 1)
Pr(D;(1) > D;(0))

_ E[D,‘Z, = 1, I\/Ia/e,- =1- E[D,’Z, = 0, Ma/e,- = ]_]
E[Dj|Z; = 1] — E[Di|Z; = Q]
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Who are the LATE compliers?

e We can't pick out individual compliers
e We can just count them

e But we can actually learn something more about them!

Let's ask: are compliers more likely to be men?

Pr(Male; = 1|D:(1) > D;(0)
Pr(Male; = 1)

. PI’(D,‘(].) > D,-(0)|Ma/e,- = 1)
Pr(D;(1) > D;(0))

_ E[D,‘Z, = 1, I\/Ia/e,- =1- E[D,’Z, = 0, Ma/e,- = ]_]
E[Di|Z; = 1] — E[Dj|Z; = 0]

— This is just the first stage for men divided by the overall first stage!
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What happens if we have multiple instruments?

Heterogeneous 7; makes things interesting:

o With homogenous 7;, all instruments should yield the same 7tATE

e With heterogeneous 7, this need not be true!
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What happens if we have multiple instruments?

Heterogeneous 7; makes things interesting:

o With homogenous 7;, all instruments should yield the same 7tATE

e With heterogeneous 7, this need not be true!

With multiple instruments, we get multiple estimates of
E[Yi(1) — Yi(0)[Di(1) > D;(0)]

Each instrument Z}, ...Z/ will have its own compliers where D;(1) > D;(0)

PPHA 34600 Program Evaluation Lecture 10 21 /30



What happens if we have multiple instruments?

With some small tweaks, we can still estimate 7/V:
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What happens if we have multiple instruments?

With some small tweaks, we can still estimate 7/V:

e We now estimate the first stage as:

D; = Oé+7TlZi1 +7TQZ,-2 + v
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What happens if we have multiple instruments?

With some small tweaks, we can still estimate 7/V:

e We now estimate the first stage as:

D; = Oé+7TlZi1 +7TQZ,-2 + v

e As usual, the second stage is just:

Y,':Oz-i-Té,'-}-é‘,'
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What happens if we have multiple instruments?

With some small tweaks, we can still estimate 7/V:

e We now estimate the first stage as:

D; = Oé+7TlZi1 +7T22,-2 + v

e As usual, the second stage is just:

Y,':Oz-i-Té,'-l-é‘,'

e And the 2SLS estimator will be:

asis _ Cov(¥i D) _ mCon(¥;.Z}) | maCov(¥;, Z7)
COV(D,‘, D,) COV(D,‘7 D,) COV(D,‘, D,)
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What happens if we have multiple instruments?

With some small tweaks, we can still estimate 7/V:

e We now estimate the first stage as:

D; = Oé+7TlZi1 +7T22,-2 + v

e As usual, the second stage is just:

Y,':Oz-i-Té,'-l-é‘,'

e And the 2SLS estimator will be:

asis _ Cov(¥i D) _ mCon(¥;.Z}) | maCov(¥;, Z7)
COV(D,‘, D,) COV(D,‘7 D,) COV(D,‘, D,)

— This is just a weighted average of each instrument’s 7/V
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Non-binary treatments

What happens with non-binary treatment?
e Binary treatment: there is only Y;(1) and Y;(0)
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Non-binary treatments

What happens with non-binary treatment?
e Binary treatment: there is only Y;(1) and Y;(0)
1

5}
(

o Non-binary treatment: define S; € {0,1, ...,
o This has many potential outcomes Y;(0), Y;(1), ..., Y;(S)
e And many causal effects: Y;(1) — Y;(0), Yi(2) — Yi(1)...

PPHA 34600 Program Evaluation Lecture 10 23 /30



Non-binary treatments

What happens with non-binary treatment?

e Binary treatment: there is only Y;(1) and Y;(0)
o Non-binary treatment: define S; € {0,1,...,5}
e This has many potential outcomes Y;(0), Y;(1), ..., Yi(5)

And many causal effects: Yi(1) — Yi(0), Y;i(2) — Yi(1)...

e In a linear model, these are all the same
e But that’s unrealistic

— 2SLS to the rescue!
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The average causal response

We can get a weighted average response with some assumptions:
o Independence + exclusion: {Y;(0), Yi(1),...Y:(S)} L Z
o First stage: E[S;(1) — S;(0)] #0
e Monotonicity: S;(1) — S;(0) > 0 for all i (or vice versa)
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The average causal response

We can get a weighted average response with some assumptions:
o Independence + exclusion: {Y;(0), Yi(1),...Y:(S)} L Z
o First stage: E[S;(1) — S;(0)] #0

e Monotonicity: S;(1) — S;(0) > 0 for all i (or vice versa)
Then:

v _ E[YilZi =1] - E[Y|Zi = ]
E[SI|Z: = 1] - E[S/|Z = 0]

where
Pr(Si(1) > s > S;(0)
TS P(Si(L) 2 ) > Si(0))
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The average causal response

— 7!V gives a weighted average of the unit causal response

— The unit causal response, E[Yi(s) — Yi(s — 1)|Si(1) > s > S;(0)] is
the average difference in potential outcomes for compliers at S; = s

— The size of the compliance group is Pr(S;(1) > s > 5;(0)
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What do we get from the IV?

We've talked through several cases

e Constant 7:

[ ]

o
D

3
(0]

(@]

—+
(@)

o

3
=2
=
=}

(@]

®

o 2V _ LATE
e Heterogeneous treatment effects, one IV:
o 2V _ [LATE
e Heterogeneous treatment effects, multiple IVs:
o AV = LSy rATE
e Multiple values of treatment:

o AV =35 WELYi(s) — Yi(s — 1)[Si(1) > s > 5;(0)]
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Taking stock of IV

We've come a long way from RCTs:
e Took a brief detour through the thicket of SOO

e Started our discussion of SOU
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Taking stock of IV

We've come a long way from RCTs:
e Took a brief detour through the thicket of SOO

e Started our discussion of SOU
— IV is our first SOU design
e |V helps us do causal inference with non-random treatment

e We just need some random leverage over treatment
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Taking stock of IV

Under the right assumptions, we can use IV for...

Eliminating bias due to measurement error

Eliminating bias due to omitted variables

Eliminating bias due to simultaneity
Translating from ITT to LATE
Estimating (L)ATEs

The trick is satisfying the exclusion restriction!
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Recap

TL;DR:

@ Instrumental variables are very powerful
® We can use them to handle non-compliance

© More generally, the IV estimates LATE (not ATE) with heterogeneity
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For next class

Topics:

e Panel data |

Reading: Jensen (2007). You can skip:
e Il: The model
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