Lecture 09: Instrumental variables II

PPHA 34600

Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

From last time: introduction to IV

Recall that we want to split $D_i = B_i \varepsilon_i + C_i$ into the C_i and other parts An instrumental variable...:

...Generates variation in C_i but is uncorrelated with ε_i

 Z_i is a valid instrument for D_i when the following are satisfied:

- **1** First stage: $Cov(Z_i, D_i) \neq 0$
 - Z_i and D_i are related
 - Without this, you're capturing nothing
 - This is actually testable!
- **2** Exclusion restriction: $Cov(Z_i, \varepsilon_i) = 0$
 - Z_i and ε_i are **not** related
 - Z_i only affects Y_i through D_i
 - Fundamentally untestable!

What makes IV so useful?

IV can be used in many ways:

- Causal inference (see last time)
- (Omitted variable bias)
- Measurement error

Suppose the true data generating process is:

$$Y_i = \alpha + \tau D_i + \beta X_i + \varepsilon_i$$

We'll assume:

- D_i and X_i are uncorrelated with ε_i
- D_i and X_i are correlated with each other
 - $\rightarrow Cov(D_i, X_i) \neq 0$
- We don't observe X_i ()
 - → Now we have to run:

$$Y_i = \alpha + \tau D_i + \nu_i$$

where

$$\nu_i = \varepsilon_i + \beta X_i$$

$$\hat{\tau} = \frac{Cov(Y_i, D_i)}{Var(D_i)}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \beta X_i + \varepsilon_i, D_i)}{Var(D_i)}}_{\text{plug in for } Y_i}$$

$$\hat{\tau} = \frac{Cov(Y_i, D_i)}{Var(D_i)}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \beta X_i + \varepsilon_i, D_i)}{Var(D_i)}}_{\text{plug in for } Y_i}$$

$$= \underbrace{\frac{Cov(\alpha, D_i,) + \tau Cov(D_i, D_i) + \beta Cov(D_i, X_i) + Cov(\varepsilon_i, D_i)}{Var(D_i)}}_{\text{laws of } Cov()}$$

$$\hat{\tau} = \frac{Cov(Y_i, D_i)}{Var(D_i)}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \beta X_i + \varepsilon_i, D_i)}{Var(D_i)}}_{\text{plug in for } Y_i}$$

$$= \underbrace{\frac{Cov(\alpha, D_i,) + \tau Cov(D_i, D_i) + \beta Cov(D_i, X_i) + Cov(\varepsilon_i, D_i)}{Var(D_i)}}_{\text{laws of } Cov()}$$

$$= \underbrace{\frac{0 + \tau Var(D_i) + \beta Cov(D_i, X_i) + 0}{Var(D_i)}}_{\text{definitions}}$$

$$\hat{\tau} = \frac{Cov(Y_i, D_i)}{Var(D_i)}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \beta X_i + \varepsilon_i, D_i)}{Var(D_i)}}_{\text{plug in for } Y_i}$$

$$= \underbrace{\frac{Cov(\alpha, D_i,) + \tau Cov(D_i, D_i) + \beta Cov(D_i, X_i) + Cov(\varepsilon_i, D_i)}{Var(D_i)}}_{\text{laws of } Cov()}$$

$$= \underbrace{\frac{0 + \tau Var(D_i) + \beta Cov(D_i, X_i) + 0}{Var(D_i)}}_{\text{definitions}}$$

$$= \underbrace{\tau + \beta \frac{Cov(D_i, X_i)}{Var(D_i)}}_{\text{simplify}}$$

PPHA 34600

With omitted variable bias, we instead have

$$\hat{ au} = au + eta rac{ extsf{Cov}(D_i, X_i)}{ extsf{Var}(D_i)}
eq au$$

With omitted variable bias, we instead have

$$\hat{\tau} = \tau + \beta \frac{Cov(D_i, X_i)}{Var(D_i)} \neq \tau$$

- Suppose we have an instrument, Z_i
- Our instrument, Z_i , moves D_i , but is uncorrelated with the error term

With omitted variable bias, we instead have

$$\hat{\tau} = \tau + \beta \frac{Cov(D_i, X_i)}{Var(D_i)} \neq \tau$$

- Suppose we have an instrument, Z_i
- Our instrument, Z_i , moves D_i , but is uncorrelated with the error term
- In this case, the error term is $\nu_i = \varepsilon_i + \beta X_i$
 - \rightarrow In other words, $Cov(Z_i, D_i) \neq 0$ and $Cov(Z_i, \nu_i) = 0$

With omitted variable bias, we instead have

$$\hat{\tau} = \tau + \beta \frac{Cov(D_i, X_i)}{Var(D_i)} \neq \tau$$

- Suppose we have an instrument, Z_i
- Our instrument, Z_i , moves D_i , but is uncorrelated with the error term
- In this case, the error term is $\nu_i = \varepsilon_i + \beta X_i$
 - \rightarrow In other words, $Cov(Z_i, D_i) \neq 0$ and $Cov(Z_i, \nu_i) = 0$
- The second-stage IV estimate is then:

$$\hat{\tau}^{2SLS} = \tau + \beta \frac{Cov(\hat{D}_i, X_i)}{Var(\hat{D}_i)}$$

With omitted variable bias, we instead have

$$\hat{\tau} = \tau + \beta \frac{Cov(D_i, X_i)}{Var(D_i)} \neq \tau$$

- Suppose we have an instrument, Z_i
- Our instrument, Z_i , moves D_i , but is uncorrelated with the error term
- In this case, the error term is $\nu_i = \varepsilon_i + \beta X_i$
 - \rightarrow In other words, $Cov(Z_i, D_i) \neq 0$ and $Cov(Z_i, \nu_i) = 0$
- The second-stage IV estimate is then:

$$\hat{\tau}^{2SLS} = \tau + \beta \frac{Cov(\hat{D}_i, X_i)}{Var(\hat{D}_i)}$$

$$\hat{\tau}^{2SLS} = \tau + \underbrace{0}_{\text{exclusion restriction}}$$

Measurement error

We often worry about measurement error:

- What happens if we don't perfectly observe D_i or Y_i ?
- This is extremely common!

Measurement error

We often worry about measurement error:

- What happens if we don't perfectly observe D_i or Y_i ?
- This is extremely common!
- The answer is...

Measurement error

We often worry about measurement error:

- What happens if we don't perfectly observe D_i or Y_i ?
- This is extremely common!
- The answer is...
- It depends!

Consider a true relationship

PPHA 34600 Program Evaluation Lecture 09 6 / 32

Measurement error in Y is fine

Estimated relationship: $\hat{\tau} = -0.061$

PPHA 34600 Program Evaluation Lecture 09 7 / 32

We don't observe Y_i , but rather $\tilde{Y}_i = Y_i + \gamma_i$

 \rightarrow Assume $Cov(\gamma_i, \varepsilon_i) = 0$ and $Cov(\gamma_i, D_i) = 0$

If we run:

$$\tilde{Y}_i = \alpha + \tau D_i + \varepsilon_i$$

$$\hat{\tau} = \underbrace{\frac{Cov(\tilde{Y}_i, D_i)}{Var(D_i)}}_{\text{def'n of OLS}}$$

We don't observe Y_i , but rather $\tilde{Y}_i = Y_i + \gamma_i$

 \rightarrow Assume $Cov(\gamma_i, \varepsilon_i) = 0$ and $Cov(\gamma_i, D_i) = 0$

If we run:

$$\tilde{Y}_i = \alpha + \tau D_i + \varepsilon_i$$

$$\hat{\tau} = \underbrace{\frac{\textit{Cov}(\tilde{Y}_i, D_i)}{\textit{Var}(D_i)}}_{\textit{def'n of OLS}}$$

$$= \underbrace{\frac{\textit{Cov}(Y_i + \gamma_i, D_i)}{\textit{Var}(D_i)}}_{\textit{def'n of } \tilde{D}_i}$$

We don't observe Y_i , but rather $\tilde{Y}_i = Y_i + \gamma_i$

 \rightarrow Assume $Cov(\gamma_i, \varepsilon_i) = 0$ and $Cov(\gamma_i, D_i) = 0$

If we run:

$$\tilde{Y}_i = \alpha + \tau D_i + \varepsilon_i$$

$$\hat{\tau} = \underbrace{\frac{\textit{Cov}(\tilde{Y}_i, D_i)}{\textit{Var}(D_i)}}_{\textit{def'n of OLS}}$$

$$= \underbrace{\frac{\textit{Cov}(Y_i + \gamma_i, D_i)}{\textit{Var}(D_i)}}_{\textit{def'n of } \tilde{D}_i}$$

$$\underbrace{\frac{\textit{Cov}(\alpha + \tau D_i + \varepsilon_i + \gamma_i, D_i)}{\textit{Var}(D_i)}}_{\textit{def'n of } Y_i}$$

$$\hat{\tau} = \frac{Cov(\alpha + \tau D_i + \varepsilon_i + \gamma_i, D_i)}{Var(D_i)}$$

$$\hat{\tau} = \frac{Cov(\alpha + \tau D_i + \varepsilon_i + \gamma_i, D_i)}{Var(D_i)}$$

$$= \underbrace{\frac{Cov(\alpha, D_i) + \tau Cov(D_i, D_i) + Cov(\varepsilon_i, D_i) + Cov(\gamma_i, D_i)}{Var(D_i)}}_{\text{covariance rules}}$$

$$\hat{\tau} = \frac{Cov(\alpha + \tau D_i + \varepsilon_i + \gamma_i, D_i)}{Var(D_i)}$$

$$= \underbrace{\frac{Cov(\alpha, D_i) + \tau Cov(D_i, D_i) + Cov(\varepsilon_i, D_i) + Cov(\gamma_i, D_i)}{Var(D_i)}}_{\text{covariance rules}}$$

$$= \underbrace{\frac{\tau Cov(D_i, D_i)}{Var(D_i)}}_{\text{assumptions}}$$

$$\hat{\tau} = \frac{Cov(\alpha + \tau D_i + \varepsilon_i + \gamma_i, D_i)}{Var(D_i)}$$

$$= \underbrace{\frac{Cov(\alpha, D_i) + \tau Cov(D_i, D_i) + Cov(\varepsilon_i, D_i) + Cov(\gamma_i, D_i)}{Var(D_i)}}_{\text{covariance rules}}$$

$$= \underbrace{\frac{\tau Cov(D_i, D_i)}{Var(D_i)}}_{\text{assumptions}}$$

$$= \tau$$
Success!

PPHA 34600 Program Evaluation Lecture 09 9 / 32

Classical measurement error in D_i is bad

Estimated relationship: $\hat{\tau} = -0.015$

PPHA 34600 Program Evaluation Lecture 09 11 / 32

Non-classical measurement error in D_i is bad

Non-classical measurement error in D_i is bad

Estimated relationship: $\hat{\tau} = -0.019$

We want to estimate:

$$Y_i = \alpha + \tau D_i + \varepsilon_i$$

We want to estimate:

$$Y_i = \alpha + \tau D_i + \varepsilon_i$$

Enter measurement error:

We don't observe D_i , but rather

$$\tilde{D}_i = D_i + \gamma_i$$

Assume:

- $Cov(D_i, \varepsilon_i) = 0$: Treatment is (as good as) random
- $Cov(\gamma_i, D_i) = 0$: Measurement error is uncorrelated with treatment
- $Cov(\gamma_i, \varepsilon_i) = 0$: Measurement error is not in our original error term

PPHA 34600 Program Evaluation Lecture 09 13 / 32

If we run:

$$Y_i = \alpha + \tau \tilde{D}_i + \varepsilon_i$$

$$\hat{ au} = \underbrace{rac{ extit{Cov}(extit{Y}_i, ilde{ extit{D}}_i)}{ extit{Var}(ilde{ extit{D}}_i)}}_{ ext{def'n of OLS}}$$

If we run:

$$Y_i = \alpha + \tau \tilde{D}_i + \varepsilon_i$$

$$\hat{ au} = rac{ extit{Cov}(Y_i, ilde{D}_i)}{ extit{Var}(ilde{D}_i)} \ ext{def'n of OLS} \ = rac{ extit{Cov}(Y_i, D_i + \gamma_i)}{ extit{Var}(D_i + \gamma_i)} \ ext{def'n of } ilde{D}_i \$$

If we run:

$$Y_i = \alpha + \tau \tilde{D}_i + \varepsilon_i$$

$$\hat{\tau} = \underbrace{\frac{\textit{Cov}(Y_i, \tilde{D}_i)}{\textit{Var}(\tilde{D}_i)}}_{\textit{def'n of OLS}}$$

$$= \underbrace{\frac{\textit{Cov}(Y_i, D_i + \gamma_i)}{\textit{Var}(D_i + \gamma_i)}}_{\textit{def'n of } \tilde{D}_i}$$

$$\underbrace{\frac{\textit{Cov}(\alpha + \tau D_i + \varepsilon_i, D_i + \gamma_i)}{\textit{Var}(D_i + \gamma_i)}}_{\textit{def'n of } Y_i}$$

$$\hat{\tau} = \frac{Cov(\alpha + \tau D_i + \varepsilon_i, D_i + \gamma_i)}{Var(D_i + \gamma_i)}$$

$$\hat{\tau} = \frac{Cov(\alpha + \tau D_i + \varepsilon_i, D_i + \gamma_i)}{Var(D_i + \gamma_i)}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \varepsilon_i, D_i + \gamma_i)}{Var(D_i) + Var(\gamma_i)}}_{\text{variance rules}}$$

What's going wrong?

$$\hat{\tau} = \frac{Cov(\alpha + \tau D_i + \varepsilon_i, D_i + \gamma_i)}{Var(D_i + \gamma_i)}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \varepsilon_i, D_i + \gamma_i)}{Var(D_i) + Var(\gamma_i)}}_{\text{variance rules}}$$

$$= \frac{Cov(\alpha, D_i) + Cov(\alpha, \gamma_i) + \tau Cov(D_i, D_i)}{Var(D_i) + Var(\gamma_i)}$$

$$+ \underbrace{\frac{\tau Cov(D_i, \gamma_i) + Cov(D_i, \varepsilon_i) + Cov(\gamma_i, \varepsilon_i)}{Var(D_i) + Var(\gamma_i)}}_{\text{covariance rules}}$$

What's going wrong?

$$\hat{\tau} = \frac{Cov(\alpha + \tau D_i + \varepsilon_i, D_i + \gamma_i)}{Var(D_i + \gamma_i)}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \varepsilon_i, D_i + \gamma_i)}{Var(D_i) + Var(\gamma_i)}}_{\text{variance rules}}$$

$$= \frac{Cov(\alpha, D_i) + Cov(\alpha, \gamma_i) + \tau Cov(D_i, D_i)}{Var(D_i) + Var(\gamma_i)}$$

$$+ \underbrace{\frac{\tau Cov(D_i, \gamma_i) + Cov(D_i, \varepsilon_i) + Cov(\gamma_i, \varepsilon_i)}{Var(D_i) + Var(\gamma_i)}}_{\text{covariance rules}}$$

$$= \underbrace{\frac{\tau Var(D_i)}{Var(D_i) + Var(\gamma_i)}}_{\text{assumptions}}$$

What's going wrong?

$$\hat{ au} = au \left(rac{Var(D_i)}{Var(D_i) + Var(\gamma_i)}
ight)$$

This is the classic attenuation bias

- $\hat{\tau}$ is biased towards zero
- Note we assumed the most innocuous form of measurement error
- If measurement error is correlated with treatment, we get OVB

PPHA 34600 Program Evaluation Lecture 09 16 / 32

A second trip to the instrument store

To solve the measurement error problem, we'll use a clever instrument:

• We will instrument for \tilde{D}_i with Z_i , a different noisy measure of D_i :

$$Z_i \equiv \mathring{D}_i = D_i + \zeta_i$$

Assume:

- $Cov(\zeta_i, D_i) = 0$: Measurement error is uncorrelated with treatment
- $Cov(\zeta_i, \gamma_i) = 0$: Measurement error in Z_i is uncorrelated w error in \tilde{D}_i
- $Cov(\zeta_i, \varepsilon_i) = 0$: Measurement error is uncorrelated with original error

Does this meet our two assumptions?

- **1 First stage:** Yes! $Cov(Z_i, \tilde{D}_i) \neq 0$
- **2** Exclusion restriction: Yes! $Cov(Z_i, \varepsilon_i) = 0$

$$\hat{\tau}^{IV} = \frac{Cov(Y_i, Z_i)}{Cov(\tilde{D}_i, Z_i)}$$

$$\hat{\tau}^{IV} = \frac{Cov(Y_i, Z_i)}{Cov(\tilde{D}_i, Z_i)}$$

$$= \underbrace{\frac{Cov(\tau D_i + \varepsilon_i, Z_i)}{Cov(D_i + \gamma_i, Z_i)}}_{\text{definition of } Y_i, \tilde{D}_i}$$

$$\hat{\tau}^{IV} = \frac{Cov(Y_i, Z_i)}{Cov(\tilde{D}_i, Z_i)}$$

$$= \underbrace{\frac{Cov(\tau D_i + \varepsilon_i, Z_i)}{Cov(D_i + \gamma_i, Z_i)}}_{\text{definition of } Y_i, \tilde{D}_i}$$

$$= \underbrace{\frac{\tau Cov(D_i, Z_i) + Cov(\varepsilon_i, Z_i)}{Cov(D_i, Z_i) + Cov(\gamma_i, Z_i)}}_{\text{variance rules}}$$

$$\hat{\tau}^{IV} = \frac{Cov(Y_i, Z_i)}{Cov(\tilde{D}_i, Z_i)}$$

$$= \underbrace{\frac{Cov(\tau D_i + \varepsilon_i, Z_i)}{Cov(D_i + \gamma_i, Z_i)}}_{\text{definition of } Y_i, \tilde{D}_i}$$

$$= \underbrace{\frac{\tau Cov(D_i, Z_i) + Cov(\varepsilon_i, Z_i)}{Cov(D_i, Z_i) + Cov(\gamma_i, Z_i)}}_{\text{variance rules}}$$

$$= \underbrace{\tau\left(\frac{Cov(D_i, Z_i)}{Cov(D_i, Z_i)}\right)}_{\text{assumptions}}$$

Remember that:

$$\hat{\tau}^{IV} = \frac{Cov(Y_i, Z_i)}{Cov(\tilde{D}_i, Z_i)}$$

$$= \underbrace{\frac{Cov(\tau D_i + \varepsilon_i, Z_i)}{Cov(D_i + \gamma_i, Z_i)}}_{\text{definition of } Y_i, \tilde{D}_i}$$

$$= \underbrace{\frac{\tau Cov(D_i, Z_i) + Cov(\varepsilon_i, Z_i)}{Cov(D_i, Z_i) + Cov(\gamma_i, Z_i)}}_{\text{variance rules}}$$

$$= \underbrace{\tau\left(\frac{Cov(D_i, Z_i)}{Cov(D_i, Z_i)}\right)}_{\text{assumptions}}$$

$$= \tau$$

Success!

IV solves measurement error

What's the intuition?

- $\tilde{D}_i = D_i + \gamma_i$
- $Z_i = \mathring{D}_i = D_i + \zeta_i$
- \rightarrow Z_i and \tilde{D}_i only have the **true** D_i in common
- \rightarrow We've assumed that $Cov(\gamma_i, \zeta_i) = 0$

19 / 32

IV solves measurement error

What's the intuition?

- $\tilde{D}_i = D_i + \gamma_i$
- $Z_i = \mathring{D}_i = D_i + \zeta_i$
- $\rightarrow Z_i$ and \tilde{D}_i only have the **true** D_i in common
- \rightarrow We've assumed that $Cov(\gamma_i, \zeta_i) = 0$

The first stage is:

$$\tilde{D}_i = \alpha + \pi \dot{D}_i + \epsilon_i$$

 \rightarrow We're only using the variation from D_i (not from ζ_i or γ_i)!

IV solves measurement error

What's the intuition?

- $\bullet \ \tilde{D}_i = D_i + \gamma_i$
- $Z_i = \mathring{D}_i = D_i + \zeta_i$
- $\rightarrow Z_i$ and \tilde{D}_i only have the **true** D_i in common
- \rightarrow We've assumed that $Cov(\gamma_i, \zeta_i) = 0$

The first stage is:

$$\tilde{D}_i = \alpha + \pi \dot{D}_i + \epsilon_i$$

- \rightarrow We're only using the variation from D_i (not from ζ_i or γ_i)!
- \rightarrow **Important caveat:** This does not work with binary D_i !
 - If true $D_i = 1$, measurement error can only be -1 or 0
 - If true $D_i = 0$, measurement error can only be 0 or 1
 - \rightarrow Measurement error in \tilde{D}_i and \tilde{D}_i will be correlated

Non-classical measurement error

We want to estimate:

$$Y_i = \alpha + \tau D_i + \varepsilon_i$$

Non-classical measurement error

We want to estimate:

$$Y_i = \alpha + \tau D_i + \varepsilon_i$$

Enter measurement error:

We don't observe D_i , but rather

$$\tilde{D}_i = D_i + \gamma_i$$

Non-classical measurement error

We want to estimate:

$$Y_i = \alpha + \tau D_i + \varepsilon_i$$

Enter measurement error:

We don't observe D_i , but rather

$$\tilde{D}_i = D_i + \gamma_i$$

Assume:

- $Cov(D_i, \varepsilon_i) = 0$: Treatment is (as good as) random
- $Cov(\gamma_i, \varepsilon_i) = 0$: Measurement error is not in our original error term

Relax the orthogonality assumption:

• Allow $Cov(D_i, \gamma_i) \neq 0$: Measurement error can be correlated with treatment

$$\hat{\tau} = \frac{Cov(Y_i, D_i + \gamma_i)}{Var(D_i + \gamma_i)}$$

$$\hat{ au} = rac{ extit{Cov}(Y_i, D_i + \gamma_i)}{ extit{Var}(D_i + \gamma_i)} \ = rac{ extit{Cov}(lpha + au D_i + arepsilon_i, D_i + \gamma_i)}{ extit{Var}(D_i + \gamma_i)} \ rac{ extit{def'n of } Y_i, ilde{D}_i}{ extit{def'n of } Y_i, ilde{D}_i}$$

$$\hat{\tau} = \frac{Cov(Y_i, D_i + \gamma_i)}{Var(D_i + \gamma_i)}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \varepsilon_i, D_i + \gamma_i)}{Var(D_i + \gamma_i)}}_{\text{def'n of } Y_i, \tilde{D}_i}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \varepsilon_i, D_i + \gamma_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)}}_{\text{variance rules}}$$

$$\hat{\tau} = \frac{Cov(Y_i, D_i + \gamma_i)}{Var(D_i + \gamma_i)}$$

$$= \frac{Cov(\alpha + \tau D_i + \varepsilon_i, D_i + \gamma_i)}{Var(D_i + \gamma_i)}$$

$$= \frac{Cov(\alpha + \tau D_i + \varepsilon_i, D_i + \gamma_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)}$$

$$= \frac{Cov(\alpha, D_i) + Cov(\alpha, \gamma_i) + \tau Cov(D_i, D_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)}$$

$$+ \frac{\tau Cov(D_i, \gamma_i) + Cov(D_i, \varepsilon_i) + Cov(\gamma_i, \varepsilon_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)}$$

$$= \frac{Cov(\alpha, D_i) + Cov(D_i, \varepsilon_i) + Cov(\gamma_i, \varepsilon_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)}$$

$$= \frac{Cov(\alpha, D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)}$$

$$= \frac{Cov(\alpha, D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)}$$

$$\hat{\tau} = \frac{Cov(\alpha, D_i) + Cov(\alpha, \gamma_i) + \tau Cov(D_i, D_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)} + \frac{\tau Cov(D_i, \gamma_i) + Cov(D_i, \varepsilon_i) + Cov(\gamma_i, \varepsilon_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)}$$

$$\hat{\tau} = \frac{Cov(\alpha, D_i) + Cov(\alpha, \gamma_i) + \tau Cov(D_i, D_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)} + \frac{\tau Cov(D_i, \gamma_i) + Cov(D_i, \varepsilon_i) + Cov(\gamma_i, \varepsilon_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)} = \underbrace{\tau \left(\frac{Var(D_i) + Cov(D_i, \gamma_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)}\right)}_{\text{rearrange}}$$

$$\hat{\tau} = \frac{Cov(\alpha, D_i) + Cov(\alpha, \gamma_i) + \tau Cov(D_i, D_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)} + \frac{\tau Cov(D_i, \gamma_i) + Cov(D_i, \varepsilon_i) + Cov(\gamma_i, \varepsilon_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)} = \underbrace{\tau \left(\frac{Var(D_i) + Cov(D_i, \gamma_i)}{Var(D_i) + Var(\gamma_i) + 2Cov(D_i, \gamma_i)}\right)}_{rearrange}$$

- → Again, we get bias
- \rightarrow Note that this **need not attenuate** $\hat{\tau}$
- \rightarrow This can actually **flip the sign** of $\hat{\tau}$ relative to τ
- \rightarrow (This depends on the sign of $Cov(D_i, \gamma_i)$)

What about IV?

Just like before...:

$$\hat{\tau}^{IV} = \frac{Cov(Y_i, Z_i)}{Cov(\tilde{D}_i, Z_i)}$$

$$= \underbrace{\frac{Cov(\tau D_i + \varepsilon_i, Z_i)}{Cov(D_i + \gamma_i, Z_i)}}_{\text{definition of } Y_i, \tilde{D}_i}$$

$$= \underbrace{\frac{\tau Cov(D_i, Z_i) + Cov(\varepsilon_i, Z_i)}{Cov(D_i, Z_i) + Cov(\gamma_i, Z_i)}}_{\text{variance rules}}$$

$$= \underbrace{\tau \left(\frac{Cov(D_i, Z_i)}{Cov(D_i, Z_i)}\right)}_{\text{assumptions}}$$

$$= \tau$$

Success!

An example: Early-life rainfall and health

Policy issue:

- Early-life shocks may be very important
- With bad harvests, kids may not get the proper nutrition

Approach:

- (We're not actually evaluating a program here)
- We want to estimate the effect of rainfall on health
- Measurement of rainfall is poor in Indonesia
- Instrument of choice: rainfall at weather stations $j \neq i$

Estimating the effects of rainfall on health

The authors will run a (simplified) version of:

$$Y_i = \tau Rainfall_i + \varepsilon_i$$

Where:

 Y_i is a health outcome of interest

 $Rainfall_i$ is rain in location i

(They'll actually do this in a series of lags)

 ε_i is an error term

Estimating the effects of rainfall on health

The authors will run a (simplified) version of:

$$Y_i = \tau Rainfall_i + \varepsilon_i$$

Where:

 Y_i is a health outcome of interest

 $Rainfall_i$ is rain in location i

(They'll actually do this in a series of lags)

 ε_i is an error term

A big concern

- Rainfall_i is measured with error
- We are likely to understate the true effect
- **Solution:** $Z_i = Rainfall\ Nearby_i!$

First stage estimates

<u>Dependent variable</u>: Rainfall in birthyear and birthdistrict (deviation of log rainfall in birth district from log of 1953-1999 district mean rainfall)

	Women	Men
Birthyear/birthdistrict rainfall, 2nd-closest station	0.138 (0.024)***	0.120 (0.023)***
Birthyear/birthdistrict rainfall, 3rd-closest station	0.144 (0.039)***	0.158 (0.035)***
Birthyear/birthdistrict rainfall, 4th-closest station	0.088 (0.053)	0.081 (0.044)*
Birthyear/birthdistrict rainfall, 5th-closest station	0.125 (0.025)***	0.158 (0.039)***
Number of observations R-squared	4,615 0.59	4,277 0.59
F-statistic: Joint significance of all four rainfall variables P-value	31.61 0.000	28.80 0.000

Placebo test estimates

Coefficients (std. errors) in regression of outcome on child's birthyear rainfall.

	<u>Women</u>	<u>Men</u>
Mother's characteristics		
Completed grades of schooling	0.204	0.132
	(1.136)	(0.947)
	[2,447]	[2,258]
Currently alive (indicator)	0.084	0.029
, ,	(0.083)	(0.108)
	[4,542]	[4,039]
Father's characteristics		
Completed grades of schooling	0.273	0.166
	(1.172)	(1.309)
	[2,810]	[2,621]
Currently alive (indicator)	0.010	-0.093
	(0.080)	(0.169)
	[4,541]	[4,040]

Placebo test estimates

	Women	Men
Self-rep. health status very good (indic.)	0.123 (0.099) [1,239]	-0.115 (0.078) [1,264]
Self-rep. health status poor/very poor (indic.)	0.090 (0.154) [1,239]	0.106 (0.134) [1,264]
Ln (lung capacity)	-0.067 (0.034)* [1,195]	0.008 (0.089) [1,130]
Height (cm.)	-1.165 (1.660) [1,207]	3.054 (2.017) [1,132]
Days absent due to illness (last 4 weeks)	0.669 (0.688) [1,240]	3.075 (1.505)* [1,261]
Completed grades of schooling	0.958 (1.274) [1,240]	-1.441 (1.947) [1,260]
Ln (expenditures per cap. in hh)	-0.193 (0.284) [1,240]	-0.329 (0.189) [1,264]
Asset index	-0.773 (0.497) [1,240]	0.166 (0.353) [1,264]
Ln (annual earnings)	0.202 (0.333) [631]	-0.612 (0.344) [1,142]

2SLS estimates

TABLE 2—EFFECT OF BIRTH YEAR RAINFALL ON ADULT OUTCOMES: WOMEN AND MEN BORN 1953–1974
(Instrumental variables estimates. Coefficients (standard errors) in regression of outcome on rainfall in individual's birth year and birth district. Instrumental variables for birth year/birth district rainfall are rainfall measured at second-through fifth-closest rainfall stations to respondent's birth district.)

	Women	Men
Self-reported health status very good (indicator)	0.101	-0.029
	(0.058)*	(0.072)
	[4,613]	[4,270]
Self-reported health status poor/very poor (indicator)	-0.192	-0.100
	(0.082)**	(0.098)
	[4,613]	[4,270]
Ln (lung capacity)	-0.044	-0.073
	(0.049)	(0.062)
	[4,454]	[3,907]
Height (centimeters)	2.832	0.998
	(0.821)***	(1.795)
	[4,495]	[3,924]
Days absent due to illness (last four weeks)	-1.175	0.515
	(0.831)	(0.779)
	[4,611]	[4,267]
Completed grades of schooling	1.086	-0.474
	(0.453)**	(1.490)
	[4,598]	[4,259]
Ln (expenditures per capita in household)	0.095	-0.274
	(0.204)	(0.301)
	[4,615]	[4,277]
Asset index	0.876	-0.279
	(0.324)**	(0.507)
	[4,613]	[4,276]
Ln (annual earnings)	0.065	-0.202
	(0.988)	(0.350)
	[2,332]	[3,963]

2SLS estimates

Table 3—Everect of Rainfall in Years Before and arter Birth: Womin Born 1953–1974 (Instrumental variables estimates, Rainfall in individual's birth year and birth district instrumented with rainfall measured at second-through fifth-closest rainfall stations to respondent's birth district.)

Dependent variable	Self-reported health status very good (indicator)	Self-reported health status poor/very poor (indicator)	Height (centimeters)	Completed grades of schooling	Asset index
Coefficient on rainfall in:					
Year −3	0.025 (0.084)	-0.114 (0.120)	1.505 (1.572)	-0.065 (0.992)	0.003 (0.424)
Year −2	-0.037 (0.103)	-0.013 (0.075)	0.854 (1.813)	-0.852 (1.670)	-0.426 (0.721)
Year −1	-0.080 (0.123)	-0.045 (0.088)	3.338 (2.155)	0.104 (1.332)	-0.380 (0.530)
Year 0	0.090 (0.067)	-0.179 (0.093)*	3.833 (1.420)**	1.598 (0.675)**	0.750 (0.399)*
Year 1	-0.008 (0.053)	-0.096 (0.067)	0.676 (1.592)	1.083	0.203
Year 2	-0.041 (0.043)	-0.015 (0.068)	1.666	0.117	-0.229 (0.452)
Year 3	-0.020 (0.116)	-0.104 (0.067)	1.996 (1.774)	-0.135 (0.802)	0.088 (0.232)
Observations	4,613	4,613	4,495	4,598	4,613

Recap

TL;DR:

- 1 Instrumental variables are very powerful
- 2 With the right assumptions...
- 3 ...we can handle OVB and ME (and simultaneity)

PPHA 34600 Program Evaluation Lecture 09 31 / 32

For next class

Topics:

Instrumental variables III

Reading: Day off!

• Take another look at Fowlie, Wolfram, et al.

PPHA 34600 Program Evaluation Lecture 09 32 / 32