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From last time: be cautious with non-experimental findings

We looked at a Lalonde-style evaluation of non-RCT methods:

e These approaches did not nail the experimental result

e The more opportunity for selection, the worse they did
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Why did the non-experimental estimators fail?

The root of all & in this class is selection:

@ Selection on observables

e Are treated and untreated units different in ways we can observe?

® Selection on unobservables

o Are treated and untreated units different in ways we can't observe?
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Suppose we're no longer in a randomized world

We still want to estimate treatment effects

o Our original instinct was the naive estimator: Y(1) — Y(0)

— Assumes all differences between D; = 1 and D; = 0 are “as good as
random”

e We can weaken this assumption if we see other characteristics
e We will turn to a series of designs where we “control for stuff”

We are entering the world of selection on observables designs:
We will assume that, conditional on observables, treatment assignment is
independent of potential outcomes (&?)
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Food for thought with selection on observables

Selection on observables is a form of last-resort design:

e This section should feel extremely unsatisfying
e That is on purpose!

e These designs are typically not (very) believable
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Central assumption underlying SOO designs
(Yi(1), Yi(0)) L Dyl X;

In words:

e Potential outcomes are independent of D;, conditional on covariates
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Central assumption underlying SOO designs

(Yi(1), Yi(0)) L Dyl X;

In words:

e Potential outcomes are independent of D;, conditional on covariates
In other words:

e “Conditional unconfoundedness”
In different words:

e “Conditional independence”
In other different words:

e “Strongly ignorable treatment assignment”
In other different words:

e Once we control for Xj, treatment is as good as random
In the last set of words:

e Once we control for X;, we've eliminated selection
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We actually need a second assumption too

0< Pr(D,- = 1’X; :X) <1
In words:

e The probability that D; = 1 for all levels of X; is between zero and one
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We actually need a second assumption too

0<Pr(Di=1Xi=x) <1

In words:

e The probability that D; = 1 for all levels of X; is between zero and one
In other words:

e “Commmon support”
In different words:

e There are both treated and untreated units for each level of X
In other different words:

e “Overlap”
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What do these assumptions buy us?

Recall that we're trying to estimate the ATE:
74T = E[Y;(1)] - E[Yi(0)]
...but all we can actually see is E[Y;(1)|D; = 1] and E[Y;(0)|D; = 0]
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What do these assumptions buy us?
Recall that we're trying to estimate the ATE:
74T = E[Y;(1)] - E[Yi(0)]
...but all we can actually see is E[Y;(1)|D; = 1] and E[Y;(0)|D; = 0]
Under random assignment, we had that
(Yi(1), Yi(0)) L D
This implies that:
EIYi(1)|D; = 1] = E[Y,(1)|D; = 0]

and
E[Yi(0)| D; = 1] = E[Yi(0)|D; = 0]

so we could just estimate

TE = y(1) - Y(0)
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What do these assumptions buy us?

Our new assumption says something a bit weaker:

(Yi(1), Yi(0)) L DilX;

PPHA 34600 Program Evaluation Lecture 07 8 /39



What do these assumptions buy us?

Our new assumption says something a bit weaker:

(Yi(1), Yi(0)) L DilX;

E[Yi(1)|Di = 1,X; = x] = E[Y;(1)|D; = 0, X; = x]
= E[Y;(1)|D;, X; = x] = E[Yi(1)|X; = x]

and
E[Yi(0)|D; = 1,X; = x] = E[Yi(0)|D; = 0, X; = x]

= E[Yi(0)|D;, Xi = x] = E[Yi(0)| X; = X]
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What do these assumptions buy us?

Our new assumption says something a bit weaker:

(Yi(1), Yi(0)) L DilX;

E[Yi(1)|Di = 1,X; = x] = E[Y;(1)|D; = 0, X; = x]
= E[Y;(1)|D;, X; = x] = E[Yi(1)|X; = x]

and
E[Yi(0)|D; = 1,X; = x] = E[Yi(0)|D; = 0, X; = x]

= E[Yi(0)|D;, Xi = x] = E[Yi(0)| X; = X]

So we can write;

500 _ ELY;(1)|Xi = x] — E[Yi(0)|X; = x]
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Estimating 74"6 under SOO

500 _ E[Yi(1)|Xi = x] — E[Yi(0)|X; = x]

Now integrate across all values of X; (take a weighted average):

/ (EIVH(1)|X; = x] — E[YA(0)|X; = x])dP(X)
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Estimating 74"6 under SOO

500 _ E[Yi(1)|Xi = x] — E[Yi(0)|X; = x]

Now integrate across all values of X; (take a weighted average):

/ (EIVH(1)|X; = x] — E[YA(0)|X; = x])dP(X)

= E[Y;(1)] — E[Yi(0)]

-

by calculus 2,
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Now integrate across all values of X; (take a weighted average):

/ (EIVH(1)|X; = x] — E[YA(0)|X; = x])dP(X)

= E[Y;(1)] — E[Yi(0)]

-

by calculus 2,

7_ATE

~—~—
by definition
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Estimating 74"6 under SOO

500 _ E[Yi(1)|Xi = x] — E[Yi(0)|X; = x]

Now integrate across all values of X; (take a weighted average):

/ (EIVH(1)|X; = x] — E[YA(0)|X; = x])dP(X)

= E[Y;(1)] — E[Yi(0)]

-

by calculus 2,

7_ATE

~—~—
by definition

Under conditional independence and common support, we can get from
500 1o ~ATE|
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How do we actually estimate 75997

There are two main SOO designs:

@ Regression adjustment

e Controlling for stuff

® Matching

e Pairing treated and untreated on observables

These are all fancy ways to estimate

JATE _ /E[Y,-(1)|X,- = x] — E[Y;(0)|X; = x]dP(X)
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Approach 1: Regression adjustment

Our regression model back in potential outcomes land:

Yi(0) = a+Xi+vi

Yi(1) = Yi(0)+ 7+ 7
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Approach 1: Regression adjustment

Our regression model back in potential outcomes land:

Yi(0) = a+Xi+vi
Yi(1) = Yi(0)+ 7+
Under constant treatment effects:

Y1) =Yi(0) +7+ 0

no i specific bit
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Approach 1: Regression adjustment

Our regression model back in potential outcomes land:

Yi(0) = a+Xi+vi
Yi(1) = Yi(0)+ 7+

Under constant treatment effects:

Yi(1) = Yi(0) + 7 + 0
no i specific bit

We can just write this as:
Yi=a+ 7D; +vX; + v;
Note that we're used to just working with
gi =1Xi+vi
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In randomized land, everything works nicely

Under random assignment, we have that:
e Y, L D
o AKA El¢;|D;]=0
o AKA E[(vXi+v;)|Di] =0

This lets us estimate:

Yi=a+1D; + ¢
and have 7 ~ 7ATE

— Note that by randomization, we don't have to worry about the Xs!
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Regression with selection on observables

Under selection on observables, we have that:
o Y L Dj|X;
o AKA Elgi|D;, Xi] =0
o AKA E[(yXi+ vi)|Di, Xi] =0

Now we have to estimate:

Yi=a+71Di+~4Xi+vi
to get 7 ~ 7ATE

— Now we have conditional independence: if we leave X; out, we're in
trouble, because E[e;|Dj] is not necessarily zero anymore!
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Selection on observables: OLS
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Selection on observables: OLS
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Concerns with regression adjustment

When we run
Yi=a+ 7D; +vX; + v;

We can represent this as a difference in means between treated and
untreated units:

Yu=a+Xy
and

\_/T:a+7+7)_(7-
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Concerns with regression adjustment

When we run
Yi=a+ 7D; +vX; + v;

We can represent this as a difference in means between treated and
untreated units:

Yu=a+Xy
and

\_/T:a+7+7)_(7-

(Y1 — Yu) = 7+ v(X7 — Xu)
N——

subtraction

PPHA 34600 Program Evaluation Lecture 07 15 / 39



Concerns with regression adjustment

When we run
Yi=a+ 7D; +vX; + v;

We can represent this as a difference in means between treated and
untreated units:

Yu=a+Xy
and

\_/T:a+7+7)_(7-

(Y7 = Yu) =7 ++(X7 — Xv)
N——

subtraction
# = (Vr = Vo) = 4(Xr — X0)

rearranged
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Functional form assumptions

We rely heavily on two things:
® X7 being close to Xy
o If [ X7 — Xyl is large, our estimate of 7 will be biased

o We need “good overlap” between X; for control and treatment

e What does this mean when we have multiple X;s?
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Functional form assumptions

We rely heavily on two things:
® X7 being close to Xy
o If [ X7 — Xyl is large, our estimate of 7 will be biased

o We need “good overlap” between X; for control and treatment

e What does this mean when we have multiple X;s?

® Our assumed functional form

o Our regression assumes the true relationship is Y; = a + 7D; + X
o We actually need to control for E[D;|X;], not just X;
o We should have run: Y; = o+ 7D; + vE[D;| Xi] + v
o If X; # E[D;|X;], then v(X; — E[D;|X;]) is in our error term
— E[wi|Di, Xi]'=0 &
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Approach 2: Matching

We can avoid some concerns by matching:

e We compare untreated units to treated units with identical X;s

e Difference in outcomes between treated and untreated is our 7
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Approach 2: Matching

We can avoid some concerns by matching:

e We compare untreated units to treated units with identical X;s

e Difference in outcomes between treated and untreated is our 7
e Since we're comparing identical X;s:

e We guarantee treated and control units have similar X;
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Approach 2: Matching

We can avoid some concerns by matching:

e We compare untreated units to treated units with identical X;s
e Difference in outcomes between treated and untreated is our 7
e Since we're comparing identical X;s:

e We guarantee treated and control units have similar X;

e Functional form is irrelevant
e Still requires:

o Y L Di|X;

e 0< PF(D;:1|X,':X)< 1
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The exact matching estimator

The simplest possible matching estimator is exact matching:

@ Divide data into “cells” uniquely defined by the covariates
@® For each value of X = x (each cell), calculate Y7 and Yy
@® Calculate Y7 — Yy for each X = x

O Estimate 77F as a weighted average of (3)

Note: This works for more than one X! See additional slides.
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Getting “close”
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How would we implement exact matching?
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Getting “close”

oo

We would only keep data with identical Xs!
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The Curse of Dimensionality

We're often interested in matching on multiple Xs:

e You have to be very lucky (dumb?) to think selection on only one X!
e Much more likely: selection depends on many Xs
e But the more Xs you have, the less likely you are to have a match

e (This same issue bites for regression too)
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The Curse of Dimensionality

We're often interested in matching on multiple Xs:

e You have to be very lucky (dumb?) to think selection on only one X!
e Much more likely: selection depends on many Xs

e But the more Xs you have, the less likely you are to have a match

(This same issue bites for regression too)

From my PhD econometrics class:

“Although you can sometimes reduce the dimensionality problems by
making various parametric assumptions...you can never truly defeat
the Curse of Dimensionality. It is, after all, a curse.”

— Michael L. Anderson, UC Berkeley
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The Curse of Dimensionality
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The Curse of Dimensionality
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The Curse of Dimensionality

. 129 observations

S e, .
: T . .

For K = 30 binary covariates, you'd ri\éed N = 230+1 — 2 147 483,648
2

]
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Examining the exact matching estimator

The good news:

e Creates observably identical treated and untreated comparisons

o No need to worry about X7 and Xy being far apart

e Makes no functional form assumptions

e Don't have to worry about how to control for Xs

— This is a very flexible estimator!
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Examining the exact matching estimator

The good news:

e Creates observably identical treated and untreated comparisons

o No need to worry about X7 and Xy being far apart

e Makes no functional form assumptions

e Don't have to worry about how to control for Xs

— This is a very flexible estimator!

The bad news:
e It doesn't work for continuous Xsl!

e How do you define cells of continuous variables?

— Very flexible, but not super practically useful?
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Going beyond the exact matching estimator

What can we do when we have continuous X?

e For each treated unit, we want to estimate its untreated

counterfactual:

e We'd like an estimate of Y;(0) for units with D; =1

e We can try to go for Y(0;x) for a given X; = x
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Going beyond the exact matching estimator

What can we do when we have continuous X?

e For each treated unit, we want to estimate its untreated
counterfactual:

e We'd like an estimate of Y;(0) for units with D; =1

e We can try to go for Y(0;x) for a given X; = x
Z What if we don't have any untreated people with X; = x?
— Find untreated units with X; close to X; = x

o With this population, we can simply take Y/(0; x€'os¢)

e This is still flexible and non-parametric!
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Going beyond the exact matching estimator

What can we do when we have continuous X?

e For each treated unit, we want to estimate its untreated
counterfactual:

e We'd like an estimate of Y;(0) for units with D; =1
e We can try to go for Y(0;x) for a given X; = x
Z What if we don't have any untreated people with X; = x?

— Find untreated units with X; close to X; = x
o With this population, we can simply take Y(0; x<los¢)

e This is still flexible and non-parametric!

How do we define “close”?
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Additional matching estimators

In datasets with continuous Xs, we can:

@ Match to “nearest neighbors”
® Match within a bandwidth

— Different ways of getting “closeness”

— Non-parametric: no real functional form assumption on Y(X)
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Nearest-neighbor matching

For each treated unit i € T, we find its “nearest neighbor” in X:

o Take the untreated unit j € U with the smallest | X; — X;|
o Now your “counterfactual” is Y;(0) = Y;(0)

e Repeat this for all treated units i € T

PATT = o S (%) - ¥i(0))
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Nearest-neighbor matching

For each treated unit i € T, we find its “nearest neighbor” in X:

o Take the untreated unit j € U with the smallest | X; — X;|

o Now your “counterfactual” is Y;(0) = Y;(0)

Repeat this for all treated units i € T

PATT = o S (%) - ¥i(0))

ieT

You can easily do this for an arbitrarily large K nearest neighbors

With multiple neighbors, just average over the Y;(0)'s to get \A/,(O)

Still not picking a functional form, but we are picking K
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Getting “close” with nearest neighbors

il
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X
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Bandwidth matching

For each i € T, we find j € U within a bandwidth h:

e Take all untreated units j € U with x; € [X; — h, X; + h]
 Now your “counterfactual” is Y;(0) = Yi(0; X; —h < X; < X; + h)
e Repeat this for all treated units i € T

SATT _ Ni Z(Yi(l) — Y;(0))

TieT
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Bandwidth matching

For each i € T, we find j € U within a bandwidth h:

e Take all untreated units j € U with x; € [X; — h, X; + h]
 Now your “counterfactual” is Y;(0) = Yi(0; X; —h < X; < X; + h)
e Repeat this for all treated units i € T

SATT _ Ni Z(Yi(l) — Y;(0))

TieT

e How do you choose a bandwidth?

e Narrow: we'll get an accurate, but noisy estimate (similar Xs, few
observations)

e Wide: we'll get an inaccurate, but precise estimate (different Xs, many
observations)

— We face a bias-variance tradeoff
— There are fancy tools for this (outside this class)
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Getting “close” with bandwidths
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A note on what we're estimating

For all three matching estimators, we can estimate ATE, ATT, or ATN:

e The trick is to make sure we know which one we're getting

e Exact matching:
o ATE: weight relative to the full sample: AATE = S°# ofeels A,

o ATT: weight relative to the treated sample:
AATT Z# of treated cells Nj, TA

e ATN: weight relative to the untreated sample:
AATN E# of untreated cells N/ U A

e Nearest neighbor and bandwidth matching:
o ATT: For each treated unit, find untreated matches:
AT = 3= Yier(Vi(1) - ¥:(0))
o ATN: For each untreated unit, find treated matches:
FATN — NLU ZieU(\A/i(l) - Y,-(O))

- Wei . AATE _ _N7__ ~ATT AATN
o ATE: Weight the ATT and ATN: 7= = 527 + TJ:’NU
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An example: Teacher value added

Policy issue:
e Improving student achievement is critical...but how?
e Teachers are probably a key component of this
e We want to measure teacher value-added

“Program” (more like an approach):

e Do good teachers improve student outcomes?
¢ Non-experimental “program” (happening):
e Teachers are (non-randomly) paired with students

— We don’t have randomization, so we need an SOO design
e Compare similar students with different teachers
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Estimating treatment effects of teachers

What happens to students with a better teacher (simplified)?

Yi = a+7VA;j + BX; + ¢
where
Yi is a long-term outcome for student i
VAj; is the value-added for teacher j who taught student i

X; are controls for student characteristics
g; Is an error term
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Estimating treatment effects of teachers

What happens to students with a better teacher (simplified)?

Yi = a+7VA;j + BX; + ¢
where
Yi is a long-term outcome for student i
VAj; is the value-added for teacher j who taught student i
X; are controls for student characteristics
g; Is an error term

This is not an experiment! Two steps:

® VA comes from comparing teachers to themselves over time
e Done using older data
@® Estimate effects of VA on student outcomes

e Students who were similar, but had differentially effective teachers

— ldentifying assumption: After controlling for X;, students with good
vs. bad teachers would have done similarly well
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What's in X;?

Control Vectors.—We construct residuals Y, using separate models for each of
khe four subject-by-school-level cells. Within each of these groups, we regress raw
outcomes Y; on a vector of covariates X;, with teacher fixed effects, as in (3), and
compute residuals Y;.. We partition the control vector X; which we used to construct
our baseline VA estimates into two components: student-level controls X/ that vary
across students within a class; and classroom-level controls X, that vary only at
the classroom level. The student-level control vector X% includes cubic polynomi-
als in prior-year math and English scores, interacted with the student’s grade level
to permit flexibility in the persistence of test scores as students age. We also con-
trol for the following student level characteristics: ethnicity, gender, age, lagged
suspensions and absences, and indicators for grade repetition, free or reduced-price
lunch, special education, and limited English. The class-level controls X, consist of
the following elements: (i) class size and class-type indicators (honors, remedial);
(ii) cubics in class and school-grade means of prior-year test scores in math and
English (defined based on those with non-missing prior scores) each interacted with
grade; (iii) class and school-year means of all the individual covariates X%; and
(iv) grade and year dummies.
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Teachers: Impacts on college

Panel A. College attendance at age 20 Panel B. College quality at age 20
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Teachers: Different controls

TABLE 2— IMPACTS OF TEACHER VALUE-ADDED ON COLLEGE ATTENDANCE

Four or more

College  College  College  College  College  College High years of
at at at quality quality quality quality  college, ages
age 20 age 20 age20  atage20 atage20 atage20  college 18-22
(%) (%) (%) () ($) ) (%) (%)
() ) ®) * ) (6) ™ ®)
Teacher VA 0.82 0.71 0.74 298.63 265.82 266.17 0.72 0.79
(0.07) (0.06) (0.09) (20.74) (18.31) (26.03) (0.05) (0.08)
Mean of 37.22 37.22 37.09 26,837 26,837 26,798 13.41 24.59
dep. var.
Baseline X X X X X X X X
controls
Parent chars. X X
controls
Lagged score X X
controls
Observations 4,170,905 4,170,905 3,130,855 4,167,571 4,167,571 3,128478 4,167,571 3,030,878
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Teachers:

Different controls (earnings)

TABLE 3—IMPACTS OF TEACHER VALUE-ADDED ON EARNINGS

Earnings Earnings Earnings Working Total income  Wage growth
atage 28 atage 28 atage 28 at age 28 atage 28 ages 22-28
($) $) $) (%) ) $)
(1) © ®) 4) ) (6)
Teacher VA 349.84 285.55 308.98 0.38 353.83 286.20
(91.92) (87.64) (110.17) (0.16) (88.62) (81.86)
Mean of dep. var. 21,256 21,256 21,468 68.09 22,108 11,454
Baseline controls X X X X X X
Parent chars. X
controls
Lagged score X
controls
Observations 650,965 650,965 510,309 650,965 650,965 650,943
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Teachers: Quasi-experiment

TaBLE 5—ImpAcTS OF TEACHER VALUE-ADDED ON COLLEGE OUTCOMES: QUASI-EXPERIMENTAL ESTIMATES

College Predicted college
attendance (%) attendance (%)
() 2) 3) (4) ©)
Panel A. College attendance at age 20
Teacher VA 0.86 0.73 0.67 1.20 0.02
(0.23) (0.25) (0.26) (0.58) (0.06)
Year FE X
School x year FE X X X X
Lagged score controls X
Lead and lag changes X
in teacher VA
Number of school x grade 33,167 33,167 26,857 8,711 33,167
x subject x year cells
Sample: Full sample ~ Full sample ~ Full sample ~ No imputed Full sample
scores
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Wrapping up SOO

We've covered the two main ways of doing SOO

@ Regression adjustment

e Controlling for stuff

o Makes parametric assumptions
® Matching

e Pairing observations

e Less parametric
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Wrapping up SOO

We've covered the two main ways of doing SOO

@ Regression adjustment

e Controlling for stuff

o Makes parametric assumptions
® Matching

e Pairing observations

e Less parametric

A few last words:

e There are other, fancier ways to do this
e All make the extremely strong conditional independence assumption
— This is generally not reasonable in real life!

— We will end our treatment of SOO here
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Recap

TL;DR:

@ Selection on observables designs are dubious
® They require extremely strong assumptions!

© But as a last resort, matching can be useful
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