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From last time: be cautious with non-experimental findings

We looked at a LaLonde-style evaluation of non-RCT methods:

• These approaches did not nail the experimental result

• The more opportunity for selection, the worse they did
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Why did the non-experimental estimators fail?

The root of all A in this class is selection:

1 Selection on observables

• Are treated and untreated units different in ways we can observe?

2 Selection on unobservables

• Are treated and untreated units different in ways we can’t observe?
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Suppose we’re no longer in a randomized world

We still want to estimate treatment effects

• Our original instinct was the naive estimator: Ȳ (1)− Ȳ (0)

→ Assumes all differences between Di = 1 and Di = 0 are “as good as
random”

• We can weaken this assumption if we see other characteristics

• We will turn to a series of designs where we “control for stuff”

We are entering the world of selection on observables designs:
We will assume that, conditional on observables, treatment assignment is

independent of potential outcomes (A?)
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Food for thought with selection on observables

Selection on observables is a form of last-resort design:

• This section should feel extremely unsatisfying

• That is on purpose!

• These designs are typically not (very) believable
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Central assumption underlying SOO designs

(Yi (1),Yi (0)) ⊥ Di |Xi

In words:

• Potential outcomes are independent of Di , conditional on covariates

In other words:

• “Conditional unconfoundedness”

In different words:

• “Conditional independence”

In other different words:

• “Strongly ignorable treatment assignment”

In other different words:

• Once we control for Xi , treatment is as good as random

In the last set of words:

• Once we control for Xi , we’ve eliminated selection
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We actually need a second assumption too

0 < Pr(Di = 1|Xi = x) < 1

In words:

• The probability that Di = 1 for all levels of Xi is between zero and one

In other words:

• “Commmon support”

In different words:

• There are both treated and untreated units for each level of X

In other different words:

• “Overlap”
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What do these assumptions buy us?

Recall that we’re trying to estimate the ATE:

τATE = E [Yi (1)]− E [Yi (0)]

...but all we can actually see is E [Yi (1)|Di = 1] and E [Yi (0)|Di = 0]

Under random assignment, we had that

(Yi (1),Yi (0)) ⊥ Di

This implies that:

E [Yi (1)|Di = 1] = E [Yi (1)|Di = 0]

and
E [Yi (0)|Di = 1] = E [Yi (0)|Di = 0]

so we could just estimate

τATE = Ȳ (1)− Ȳ (0)
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What do these assumptions buy us?

Our new assumption says something a bit weaker:

(Yi (1),Yi (0)) ⊥ Di |Xi

E [Yi (1)|Di = 1,Xi = x ] = E [Yi (1)|Di = 0,Xi = x ]

= E [Yi (1)|Di ,Xi = x ] = E [Yi (1)|Xi = x ]

and
E [Yi (0)|Di = 1,Xi = x ] = E [Yi (0)|Di = 0,Xi = x ]

= E [Yi (0)|Di ,Xi = x ] = E [Yi (0)|Xi = x ]

So we can write:

τSOO = E [Yi (1)|Xi = x ]− E [Yi (0)|Xi = x ]
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Estimating τATE under SOO

τSOO = E [Yi (1)|Xi = x ]− E [Yi (0)|Xi = x ]

Now integrate across all values of Xi (take a weighted average):∫
(E [Yi (1)|Xi = x ]− E [Yi (0)|Xi = x ])dP(X )

= E [Yi (1)]− E [Yi (0)]︸ ︷︷ ︸
by calculus A

= τATE︸ ︷︷ ︸
by definition

Under conditional independence and common support, we can get from
τSOO to τATE !
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How do we actually estimate τSOO?

There are two main SOO designs:

1 Regression adjustment

• Controlling for stuff

2 Matching

• Pairing treated and untreated on observables

These are all fancy ways to estimate

τATE =

∫
E [Yi (1)|Xi = x ]− E [Yi (0)|Xi = x ]dP(X )
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Approach 1: Regression adjustment

Our regression model back in potential outcomes land:

Yi (0) = α + γXi + νi

Yi (1) = Yi (0) + τ + τi

Under constant treatment effects:

Yi (1) = Yi (0) + τ + 0︸︷︷︸
no i specific bit

We can just write this as:

Yi = α + τDi + γXi + νi

Note that we’re used to just working with

εi = γXi + νi
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In randomized land, everything works nicely

Under random assignment, we have that:

• Yi ⊥ Di

• AKA E [εi |Di ] = 0

• AKA E [(γXi + νi )|Di ] = 0

This lets us estimate:
Yi = α + τDi + εi

and have τ̂ ≈ τATE

→ Note that by randomization, we don’t have to worry about the Xi s!
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Regression with selection on observables

Under selection on observables, we have that:

• Yi ⊥ Di |Xi

• AKA E [εi |Di ,Xi ] = 0

• AKA E [(γXi + νi )|Di ,Xi ] = 0

Now we have to estimate:

Yi = α + τDi + γXi + νi

to get τ̂ ≈ τATE

→ Now we have conditional independence: if we leave Xi out, we’re in
trouble, because E [εi |Di ] is not necessarily zero anymore!
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Selection on observables: OLS
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Concerns with regression adjustment

When we run
Yi = α + τDi + γXi + νi

We can represent this as a difference in means between treated and
untreated units:

ȲU = α + γX̄U

and
ȲT = α + τ + γX̄T

(ȲT − ȲU)︸ ︷︷ ︸
subtraction

= τ + γ(X̄T − X̄U)

τ̂ = (ȲT − ȲU)− γ̂(X̄T − X̄U)︸ ︷︷ ︸
rearranged
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Functional form assumptions

We rely heavily on two things:

1 X̄T being close to X̄U

• If |X̄T − X̄U | is large, our estimate of τ̂ will be biased

• We need “good overlap” between Xi for control and treatment

• What does this mean when we have multiple Xi s?

2 Our assumed functional form

• Our regression assumes the true relationship is Yi = α + τDi + γXi

• We actually need to control for E [Di |Xi ], not just Xi

• We should have run: Yi = α + τDi + γE [Di |Xi ] + νi

• If Xi 6= E [Di |Xi ], then γ(Xi − E [Di |Xi ]) is in our error term

→ E [νi |Di ,Xi ]! = 0 A
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Approach 2: Matching

We can avoid some concerns by matching:

• We compare untreated units to treated units with identical Xi s

• Difference in outcomes between treated and untreated is our τ̂

• Since we’re comparing identical Xi s:

• We guarantee treated and control units have similar Xi

• Functional form is irrelevant

• Still requires:

• Yi ⊥ Di |Xi

• 0 < Pr(Di = 1|Xi = x) < 1
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The exact matching estimator

The simplest possible matching estimator is exact matching:

1 Divide data into “cells” uniquely defined by the covariates

2 For each value of X = x (each cell), calculate ȲT and ȲU

3 Calculate ȲT − ȲU for each X = x

4 Estimate τATE as a weighted average of (3)

Note: This works for more than one X ! See additional slides.
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Getting “close”

How would we implement exact matching?
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Getting “close”

We would only keep data with identical X s!
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The Curse of Dimensionality

We’re often interested in matching on multiple X s:

• You have to be very lucky (dumb?) to think selection on only one X !

• Much more likely: selection depends on many X s

• But the more X s you have, the less likely you are to have a match

• (This same issue bites for regression too)

• From my PhD econometrics class:

“Although you can sometimes reduce the dimensionality problems by
making various parametric assumptions...you can never truly defeat

the Curse of Dimensionality. It is, after all, a curse.”
– Michael L. Anderson, UC Berkeley
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The Curse of Dimensionality

For K = 30 binary covariates, you’d need N = 230+1 = 2, 147, 483, 648
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Examining the exact matching estimator

The good news:

• Creates observably identical treated and untreated comparisons

• No need to worry about X̄T and X̄U being far apart

• Makes no functional form assumptions

• Don’t have to worry about how to control for X s

→ This is a very flexible estimator!

The bad news:

• It doesn’t work for continuous X s!

• How do you define cells of continuous variables?

→ Very flexible, but not super practically useful?
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Going beyond the exact matching estimator

What can we do when we have continuous X?

• For each treated unit, we want to estimate its untreated
counterfactual:

• We’d like an estimate of Yi (0) for units with Di = 1

• We can try to go for Y (0; x) for a given Xi = x

A What if we don’t have any untreated people with Xi = x?

→ Find untreated units with Xi close to Xi = x

• With this population, we can simply take Ȳ (0; xclose)

• This is still flexible and non-parametric!

How do we define “close”?
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Additional matching estimators

In datasets with continuous X s, we can:

1 Match to “nearest neighbors”

2 Match within a bandwidth

→ Different ways of getting “closeness”

→ Non-parametric: no real functional form assumption on Y (X )
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Nearest-neighbor matching

For each treated unit i ∈ T , we find its “nearest neighbor” in X:

• Take the untreated unit j ∈ U with the smallest |Xj − Xi |

• Now your “counterfactual” is Ŷi (0) = Yj(0)

• Repeat this for all treated units i ∈ T

τ̂ATT =
1

NT

∑
i∈T

(Yi (1)− Ŷi (0))

• You can easily do this for an arbitrarily large K nearest neighbors

• With multiple neighbors, just average over the Yj(0)’s to get Ŷi (0)

• Still not picking a functional form, but we are picking K
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Getting “close” with nearest neighbors

Note that multiple untreated units can match to the same treated one
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Bandwidth matching

For each i ∈ T , we find j ∈ U within a bandwidth h:

• Take all untreated units j ∈ U with xj ∈ [Xi − h,Xi + h]

• Now your “counterfactual” is Ŷi (0) = Ȳj(0;Xi − h ≤ Xj ≤ Xi + h)

• Repeat this for all treated units i ∈ T

τ̂ATT =
1

NT

∑
i∈T

(Yi (1)− Ŷi (0))

• How do you choose a bandwidth?

• Narrow: we’ll get an accurate, but noisy estimate (similar X s, few
observations)

• Wide: we’ll get an inaccurate, but precise estimate (different X s, many
observations)

→ We face a bias-variance tradeoff

→ There are fancy tools for this (outside this class)
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Getting “close” with bandwidths

Note that multiple treated units can share an untreated unitPPHA 34600 Program Evaluation Lecture 07 30 / 39



A note on what we’re estimating

For all three matching estimators, we can estimate ATE, ATT, or ATN:

• The trick is to make sure we know which one we’re getting

• Exact matching:

• ATE: weight relative to the full sample: ∆̂ATE =
∑# of cells

j=1
Nj

N ∆̂j

• ATT: weight relative to the treated sample:
∆̂ATT =

∑# of treated cells
k=1

Nk,T

NT
∆̂k

• ATN: weight relative to the untreated sample:
∆̂ATN =

∑# of untreated cells
l=1

Nl,U

NU
∆̂l

• Nearest neighbor and bandwidth matching:

• ATT: For each treated unit, find untreated matches:
τ̂ATT = 1

NT

∑
i∈T (Yi (1)− Ŷi (0))

• ATN: For each untreated unit, find treated matches:
τ̂ATN = 1

NU

∑
i∈U(Ŷi (1)− Yi (0))

• ATE: Weight the ATT and ATN: τ̂ATE = NT

NT +NU
τ̂ATT + NN

NT +NU
τ̂ATN
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An example: Appliance replacements in Mexico

Policy issue:

• Energy efficiency is seen as a “win-win”:

• Customers “win” by saving on their power bills

• The planet “wins” because we reduce GHGs

• But does EE actually work?

Program:

• Mexican government subsidized HVAC and fridge replacements

• Cute title: “Cash for coolers”

• Non-experimental program:

• If you had an old appliance, you were eligible

→ We don’t have randomization, so we need an SOO design
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Estimating treatment effects of appliance replacements

What happens to energy consumption with a replacement (simplified)?

Yi = τDi + εi

where
Yi is kWh of electricity use at household i
Di = 1[New appliance]i is an indicator for getting an upgrade
εi is an error term

This is not an experiment: we need a control group! A few options...

1 Treated vs. randomly selected untreated households

2 Only treated households (leverages time comparison – more on that
later!)

3 Matched: account numbers
• Think of this as NN or BW matching

4 Matched: 10 closest account numbers plus consumption
• BW on accounts, NN on consumption
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Mexican appliances: How well does matching work?
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Mexican appliances: Untreated consumption patterns
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Mexican appliances: Treatment effects
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Mexican appliances: Policy implications
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Wrapping up SOO

We’ve covered the two main ways of doing SOO

1 Regression adjustment

• Controlling for stuff

• Makes parametric assumptions

2 Matching

• Pairing observations

• Less parametric

A few last words:

• There are other, fancier ways to do this

• All make the extremely strong conditional independence assumption

→ This is generally not reasonable in real life!

→ We will end our treatment of SOO here
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Recap

TL;DR:

1 Selection on observables designs are dubious

2 They require extremely strong assumptions!

3 But as a last resort, matching can be useful
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