Lecture 07:
 Selection on observables

PPHA 34600
Prof. Fiona Burlig

Harris School of Public Policy
University of Chicago

From last time: be cautious with non-experimental findings

We looked at a LaLonde-style evaluation of non-RCT methods:

- These approaches did not nail the experimental result
- The more opportunity for selection, the worse they did

Why did the non-experimental estimators fail?

The root of all in this class is selection:
(1) Selection on observables

- Are treated and untreated units different in ways we can observe?
(2) Selection on unobservables
- Are treated and untreated units different in ways we can't observe?

Why did the non-experimental estimators fail?

The root of all in this class is selection:
(1) Selection on observables

- Are treated and untreated units different in ways we can observe?
(2) Selection on unobservables
- Are treated and untreated units different in ways we can't observe?

Suppose we're no longer in a randomized world

We still want to estimate treatment effects

- Our original instinct was the naive estimator: $\bar{Y}(1)-\bar{Y}(0)$
\rightarrow Assumes all differences between $D_{i}=1$ and $D_{i}=0$ are "as good as random"
- We can weaken this assumption if we see other characteristics
- We will turn to a series of designs where we "control for stuff"

We are entering the world of selection on observables designs:
We will assume that, conditional on observables, treatment assignment is independent of potential outcomes (曷?)

Food for thought with selection on observables

Selection on observables is a form of last-resort design:

- This section should feel extremely unsatisfying
- That is on purpose!
- These designs are typically not (very) believable

Central assumption underlying SOO designs

$$
\left(Y_{i}(1), Y_{i}(0)\right) \perp D_{i} \mid X_{i}
$$

In words:

- Potential outcomes are independent of D_{i}, conditional on covariates

Central assumption underlying SOO designs

$$
\left(Y_{i}(1), Y_{i}(0)\right) \perp D_{i} \mid X_{i}
$$

In words:

- Potential outcomes are independent of D_{i}, conditional on covariates In other words:
- "Conditional unconfoundedness"

In different words:

- "Conditional independence"

In other different words:

- "Strongly ignorable treatment assignment"

In other different words:

- Once we control for X_{i}, treatment is as good as random

In the last set of words:

- Once we control for X_{i}, we've eliminated selection

We actually need a second assumption too

$$
0<\operatorname{Pr}\left(D_{i}=1 \mid X_{i}=x\right)<1
$$

In words:

- The probability that $D_{i}=1$ for all levels of X_{i} is between zero and one

We actually need a second assumption too

$$
0<\operatorname{Pr}\left(D_{i}=1 \mid X_{i}=x\right)<1
$$

In words:

- The probability that $D_{i}=1$ for all levels of X_{i} is between zero and one In other words:
- "Commmon support"

In different words:

- There are both treated and untreated units for each level of X In other different words:
- "Overlap"

What do these assumptions buy us?

Recall that we're trying to estimate the ATE:

$$
\tau^{A T E}=E\left[Y_{i}(1)\right]-E\left[Y_{i}(0)\right]
$$

...but all we can actually see is $E\left[Y_{i}(1) \mid D_{i}=1\right]$ and $E\left[Y_{i}(0) \mid D_{i}=0\right]$

What do these assumptions buy us?

Recall that we're trying to estimate the ATE:

$$
\tau^{A T E}=E\left[Y_{i}(1)\right]-E\left[Y_{i}(0)\right]
$$

...but all we can actually see is $E\left[Y_{i}(1) \mid D_{i}=1\right]$ and $E\left[Y_{i}(0) \mid D_{i}=0\right]$
Under random assignment, we had that

$$
\left(Y_{i}(1), Y_{i}(0)\right) \perp D_{i}
$$

This implies that:

$$
E\left[Y_{i}(1) \mid D_{i}=1\right]=E\left[Y_{i}(1) \mid D_{i}=0\right]
$$

and

$$
E\left[Y_{i}(0) \mid D_{i}=1\right]=E\left[Y_{i}(0) \mid D_{i}=0\right]
$$

so we could just estimate

$$
\tau^{A T E}=\bar{Y}(1)-\bar{Y}(0)
$$

What do these assumptions buy us?

Our new assumption says something a bit weaker:

$$
\left(Y_{i}(1), Y_{i}(0)\right) \perp D_{i} \mid X_{i}
$$

What do these assumptions buy us?

Our new assumption says something a bit weaker:

$$
\left(Y_{i}(1), Y_{i}(0)\right) \perp D_{i} \mid X_{i}
$$

$$
\begin{gathered}
E\left[Y_{i}(1) \mid D_{i}=1, X_{i}=x\right]=E\left[Y_{i}(1) \mid D_{i}=0, X_{i}=x\right] \\
=E\left[Y_{i}(1) \mid D_{i}, X_{i}=x\right]=E\left[Y_{i}(1) \mid X_{i}=x\right]
\end{gathered}
$$

and

$$
\begin{gathered}
E\left[Y_{i}(0) \mid D_{i}=1, X_{i}=x\right]=E\left[Y_{i}(0) \mid D_{i}=0, X_{i}=x\right] \\
\quad=E\left[Y_{i}(0) \mid D_{i}, X_{i}=x\right]=E\left[Y_{i}(0) \mid X_{i}=x\right]
\end{gathered}
$$

What do these assumptions buy us?

Our new assumption says something a bit weaker:

$$
\left(Y_{i}(1), Y_{i}(0)\right) \perp D_{i} \mid X_{i}
$$

$$
\begin{gathered}
E\left[Y_{i}(1) \mid D_{i}=1, X_{i}=x\right]=E\left[Y_{i}(1) \mid D_{i}=0, X_{i}=x\right] \\
=E\left[Y_{i}(1) \mid D_{i}, X_{i}=x\right]=E\left[Y_{i}(1) \mid X_{i}=x\right]
\end{gathered}
$$

and

$$
\begin{gathered}
E\left[Y_{i}(0) \mid D_{i}=1, X_{i}=x\right]=E\left[Y_{i}(0) \mid D_{i}=0, X_{i}=x\right] \\
\quad=E\left[Y_{i}(0) \mid D_{i}, X_{i}=x\right]=E\left[Y_{i}(0) \mid X_{i}=x\right]
\end{gathered}
$$

So we can write:

$$
\tau^{S O O}=E\left[Y_{i}(1) \mid X_{i}=x\right]-E\left[Y_{i}(0) \mid X_{i}=x\right]
$$

Estimating $\tau^{A T E}$ under SOO

$$
\tau^{S O O}=E\left[Y_{i}(1) \mid X_{i}=x\right]-E\left[Y_{i}(0) \mid X_{i}=x\right]
$$

Now integrate across all values of X_{i} (take a weighted average):

$$
\int\left(E\left[Y_{i}(1) \mid X_{i}=x\right]-E\left[Y_{i}(0) \mid X_{i}=x\right]\right) d P(X)
$$

Estimating $\tau^{A T E}$ under SOO

$$
\tau^{S O O}=E\left[Y_{i}(1) \mid X_{i}=x\right]-E\left[Y_{i}(0) \mid X_{i}=x\right]
$$

Now integrate across all values of X_{i} (take a weighted average):

$$
\begin{gathered}
\int\left(E\left[Y_{i}(1) \mid X_{i}=x\right]-E\left[Y_{i}(0) \mid X_{i}=x\right]\right) d P(X) \\
=\underbrace{E\left[Y_{i}(1)\right]-E\left[Y_{i}(0)\right]}_{\text {by calculus }}
\end{gathered}
$$

Estimating $\tau^{A T E}$ under SOO

$$
\tau^{S O O}=E\left[Y_{i}(1) \mid X_{i}=x\right]-E\left[Y_{i}(0) \mid X_{i}=x\right]
$$

Now integrate across all values of X_{i} (take a weighted average):

$$
\begin{gathered}
\int\left(E\left[Y_{i}(1) \mid X_{i}=x\right]-E\left[Y_{i}(0) \mid X_{i}=x\right]\right) d P(X) \\
=\underbrace{E\left[Y_{i}(1)\right]-E\left[Y_{i}(0)\right]}_{\text {by calculus }} \\
=\underbrace{\tau^{A T E}}_{\text {by definition }}
\end{gathered}
$$

Estimating $\tau^{A T E}$ under SOO

$$
\tau^{S O O}=E\left[Y_{i}(1) \mid X_{i}=x\right]-E\left[Y_{i}(0) \mid X_{i}=x\right]
$$

Now integrate across all values of X_{i} (take a weighted average):

$$
\begin{gathered}
\int\left(E\left[Y_{i}(1) \mid X_{i}=x\right]-E\left[Y_{i}(0) \mid X_{i}=x\right]\right) d P(X) \\
=\underbrace{E\left[Y_{i}(1)\right]-E\left[Y_{i}(0)\right]}_{\text {by calculus } 0: 甘} \\
=\underbrace{\tau^{A T E}}_{\text {by definition }}
\end{gathered}
$$

Under conditional independence and common support, we can get from $\tau^{S O O}$ to $\tau^{A T E}$!

How do we actually estimate τ^{SOO} ?

There are two main SOO designs:
(1) Regression adjustment

- Controlling for stuff
(2) Matching
- Pairing treated and untreated on observables

These are all fancy ways to estimate

$$
\tau^{A T E}=\int E\left[Y_{i}(1) \mid X_{i}=x\right]-E\left[Y_{i}(0) \mid X_{i}=x\right] d P(X)
$$

Approach 1: Regression adjustment

Our regression model back in potential outcomes land:

$$
\begin{gathered}
Y_{i}(0)=\alpha+\gamma X_{i}+\nu_{i} \\
Y_{i}(1)=Y_{i}(0)+\tau+\tau_{i}
\end{gathered}
$$

Approach 1: Regression adjustment

Our regression model back in potential outcomes land:

$$
\begin{gathered}
Y_{i}(0)=\alpha+\gamma X_{i}+\nu_{i} \\
Y_{i}(1)=Y_{i}(0)+\tau+\tau_{i}
\end{gathered}
$$

Under constant treatment effects:

$$
Y_{i}(1)=Y_{i}(0)+\tau+\underbrace{0}_{\text {no } i \text { specific bit }}
$$

Approach 1: Regression adjustment

Our regression model back in potential outcomes land:

$$
\begin{gathered}
Y_{i}(0)=\alpha+\gamma X_{i}+\nu_{i} \\
Y_{i}(1)=Y_{i}(0)+\tau+\tau_{i}
\end{gathered}
$$

Under constant treatment effects:

$$
Y_{i}(1)=Y_{i}(0)+\tau+\underbrace{0}_{\text {no } i \text { specific bit }}
$$

We can just write this as:

$$
Y_{i}=\alpha+\tau D_{i}+\gamma X_{i}+\nu_{i}
$$

Note that we're used to just working with

$$
\varepsilon_{i}=\gamma X_{i}+\nu_{i}
$$

In randomized land, everything works nicely

Under random assignment, we have that:

- $Y_{i} \perp D_{i}$
- AKA $E\left[\varepsilon_{i} \mid D_{i}\right]=0$
- AKA $E\left[\left(\gamma X_{i}+\nu_{i}\right) \mid D_{i}\right]=0$

This lets us estimate:

$$
Y_{i}=\alpha+\tau D_{i}+\varepsilon_{i}
$$

and have $\hat{\tau} \approx \tau^{A T E}$
\rightarrow Note that by randomization, we don't have to worry about the X_{i} s!

Regression with selection on observables

Under selection on observables, we have that:

- $Y_{i} \perp D_{i} \mid X_{i}$
- AKA $E\left[\varepsilon_{i} \mid D_{i}, X_{i}\right]=0$
- AKA $E\left[\left(\gamma X_{i}+\nu_{i}\right) \mid D_{i}, X_{i}\right]=0$

Now we have to estimate:

$$
Y_{i}=\alpha+\tau D_{i}+\gamma X_{i}+\nu_{i}
$$

to get $\hat{\tau} \approx \tau^{A T E}$
\rightarrow Now we have conditional independence: if we leave X_{i} out, we're in trouble, because $E\left[\varepsilon_{i} \mid D_{i}\right]$ is not necessarily zero anymore!

Selection on observables: OLS

Selection on observables: OLS

Concerns with regression adjustment

When we run

$$
Y_{i}=\alpha+\tau D_{i}+\gamma X_{i}+\nu_{i}
$$

We can represent this as a difference in means between treated and untreated units:

$$
\bar{Y}_{U}=\alpha+\gamma \bar{X}_{U}
$$

and

$$
\bar{Y}_{T}=\alpha+\tau+\gamma \bar{X}_{T}
$$

Concerns with regression adjustment

When we run

$$
Y_{i}=\alpha+\tau D_{i}+\gamma X_{i}+\nu_{i}
$$

We can represent this as a difference in means between treated and untreated units:

$$
\bar{Y}_{U}=\alpha+\gamma \bar{X}_{U}
$$

and

$$
\begin{gathered}
\bar{Y}_{T}=\alpha+\tau+\gamma \bar{X}_{T} \\
\underbrace{\left(\bar{Y}_{T}-\bar{Y}_{U}\right)}_{\text {subtraction }}=\tau+\gamma\left(\bar{X}_{T}-\bar{X}_{U}\right)
\end{gathered}
$$

Concerns with regression adjustment

When we run

$$
Y_{i}=\alpha+\tau D_{i}+\gamma X_{i}+\nu_{i}
$$

We can represent this as a difference in means between treated and untreated units:

$$
\bar{Y}_{U}=\alpha+\gamma \bar{X}_{U}
$$

and

$$
\begin{gathered}
\bar{Y}_{T}=\alpha+\tau+\gamma \bar{X}_{T} \\
\underbrace{\left(\bar{Y}_{T}-\bar{Y}_{U}\right)}_{\text {subtraction }}=\tau+\gamma\left(\bar{X}_{T}-\bar{X}_{U}\right) \\
\hat{\tau}=\underbrace{\left(\bar{Y}_{T}-\bar{Y}_{U}\right)-\hat{\gamma}\left(\bar{X}_{T}-\bar{X}_{U}\right)}_{\text {rearranged }}
\end{gathered}
$$

Functional form assumptions

We rely heavily on two things:
(1) \bar{X}_{T} being close to \bar{X}_{U}

- If $\left|\bar{X}_{T}-\bar{X}_{U}\right|$ is large, our estimate of $\hat{\tau}$ will be biased
- We need "good overlap" between X_{i} for control and treatment
- What does this mean when we have multiple X_{i} s?

Functional form assumptions

We rely heavily on two things:
(1) \bar{X}_{T} being close to \bar{X}_{U}

- If $\left|\bar{X}_{T}-\bar{X}_{U}\right|$ is large, our estimate of $\hat{\tau}$ will be biased
- We need "good overlap" between X_{i} for control and treatment
- What does this mean when we have multiple X_{i} s?
(2) Our assumed functional form
- Our regression assumes the true relationship is $Y_{i}=\alpha+\tau D_{i}+\gamma X_{i}$
- We actually need to control for $E\left[D_{i} \mid X_{i}\right]$, not just X_{i}
- We should have run: $Y_{i}=\alpha+\tau D_{i}+\gamma E\left[D_{i} \mid X_{i}\right]+\nu_{i}$
- If $X_{i} \neq E\left[D_{i} \mid X_{i}\right]$, then $\gamma\left(X_{i}-E\left[D_{i} \mid X_{i}\right]\right)$ is in our error term
$\rightarrow E\left[\nu_{i} \mid D_{i}, X_{i}\right]!=0$ 思

Approach 2: Matching

We can avoid some concerns by matching:

- We compare untreated units to treated units with identical X_{i} s
- Difference in outcomes between treated and untreated is our $\hat{\tau}$

Approach 2: Matching

We can avoid some concerns by matching:

- We compare untreated units to treated units with identical X_{i} s
- Difference in outcomes between treated and untreated is our $\hat{\tau}$
- Since we're comparing identical $X_{i} \mathrm{~s}$:
- We guarantee treated and control units have similar X_{i}

Approach 2: Matching

We can avoid some concerns by matching:

- We compare untreated units to treated units with identical X_{i} s
- Difference in outcomes between treated and untreated is our $\hat{\tau}$
- Since we're comparing identical $X_{i} \mathrm{~s}$:
- We guarantee treated and control units have similar X_{i}
- Functional form is irrelevant
- Still requires:
- $Y_{i} \perp D_{i} \mid X_{i}$
- $0<\operatorname{Pr}\left(D_{i}=1 \mid X_{i}=x\right)<1$

The exact matching estimator

The simplest possible matching estimator is exact matching:
(1) Divide data into "cells" uniquely defined by the covariates

2 For each value of $X=x$ (each cell), calculate \bar{Y}_{T} and \bar{Y}_{U}
(3) Calculate $\bar{Y}_{T}-\bar{Y}_{U}$ for each $X=x$
(4) Estimate $\tau^{A T E}$ as a weighted average of (3)

Note: This works for more than one X ! See additional slides.

Getting "close"

How would we implement exact matching?

Getting "close"

We would only keep data with identical X s!

The Curse of Dimensionality

We're often interested in matching on multiple $X \mathrm{~s}$:

- You have to be very lucky (dumb?) to think selection on only one X !
- Much more likely: selection depends on many Xs
- But the more Xs you have, the less likely you are to have a match
- (This same issue bites for regression too)

The Curse of Dimensionality

We're often interested in matching on multiple $X \mathrm{~s}$:

- You have to be very lucky (dumb?) to think selection on only one X !
- Much more likely: selection depends on many Xs
- But the more X s you have, the less likely you are to have a match
- (This same issue bites for regression too)
- From my PhD econometrics class:
"Although you can sometimes reduce the dimensionality problems by making various parametric assumptions...you can never truly defeat the Curse of Dimensionality. It is, after all, a curse."
- Michael L. Anderson, UC Berkeley

The Curse of Dimensionality

The Curse of Dimensionality

The Curse of Dimensionality

For $K=30$ binary covariates, you'd need $N=2^{X_{1}}=2,147,483,648$易

Examining the exact matching estimator

The good news:

- Creates observably identical treated and untreated comparisons
- No need to worry about \bar{X}_{T} and \bar{X}_{U} being far apart
- Makes no functional form assumptions
- Don't have to worry about how to control for X s
\rightarrow This is a very flexible estimator!

Examining the exact matching estimator

The good news:

- Creates observably identical treated and untreated comparisons
- No need to worry about \bar{X}_{T} and \bar{X}_{U} being far apart
- Makes no functional form assumptions
- Don't have to worry about how to control for X s
\rightarrow This is a very flexible estimator!
The bad news:
- It doesn't work for continuous Xs!
- How do you define cells of continuous variables?
\rightarrow Very flexible, but not super practically useful?

Going beyond the exact matching estimator

What can we do when we have continuous X ?

- For each treated unit, we want to estimate its untreated counterfactual:
- We'd like an estimate of $Y_{i}(0)$ for units with $D_{i}=1$
- We can try to go for $Y(0 ; x)$ for a given $X_{i}=x$

Going beyond the exact matching estimator

What can we do when we have continuous X ?

- For each treated unit, we want to estimate its untreated counterfactual:
- We'd like an estimate of $Y_{i}(0)$ for units with $D_{i}=1$
- We can try to go for $Y(0 ; x)$ for a given $X_{i}=x$

What if we don't have any untreated people with $X_{i}=x$?
\rightarrow Find untreated units with X_{i} close to $X_{i}=x$

- With this population, we can simply take $\bar{Y}\left(0 ; x^{\text {close }}\right)$
- This is still flexible and non-parametric!

Going beyond the exact matching estimator

What can we do when we have continuous X ?

- For each treated unit, we want to estimate its untreated counterfactual:
- We'd like an estimate of $Y_{i}(0)$ for units with $D_{i}=1$
- We can try to go for $Y(0 ; x)$ for a given $X_{i}=x$

What if we don't have any untreated people with $X_{i}=x$?
\rightarrow Find untreated units with X_{i} close to $X_{i}=x$

- With this population, we can simply take $\bar{Y}\left(0 ; x^{\text {close }}\right)$
- This is still flexible and non-parametric!

How do we define "close"?

Additional matching estimators

In datasets with continuous $X \mathrm{~s}$, we can:
(1) Match to "nearest neighbors"
(2) Match within a bandwidth
\rightarrow Different ways of getting "closeness"
\rightarrow Non-parametric: no real functional form assumption on $Y(X)$

Nearest-neighbor matching

For each treated unit $i \in T$, we find its "nearest neighbor" in X :

- Take the untreated unit $j \in U$ with the smallest $\left|X_{j}-X_{i}\right|$
- Now your "counterfactual" is $\hat{Y}_{i}(0)=Y_{j}(0)$
- Repeat this for all treated units $i \in T$

$$
\hat{\tau}^{A T T}=\frac{1}{N_{T}} \sum_{i \in T}\left(Y_{i}(1)-\hat{Y}_{i}(0)\right)
$$

Nearest-neighbor matching

For each treated unit $i \in T$, we find its "nearest neighbor" in X :

- Take the untreated unit $j \in U$ with the smallest $\left|X_{j}-X_{i}\right|$
- Now your "counterfactual" is $\hat{Y}_{i}(0)=Y_{j}(0)$
- Repeat this for all treated units $i \in T$

$$
\hat{\tau}^{A T T}=\frac{1}{N_{T}} \sum_{i \in T}\left(Y_{i}(1)-\hat{Y}_{i}(0)\right)
$$

- You can easily do this for an arbitrarily large K nearest neighbors
- With multiple neighbors, just average over the $Y_{j}(0)$'s to get $\hat{Y}_{i}(0)$
- Still not picking a functional form, but we are picking K

Getting "close" with nearest neighbors

Bandwidth matching

For each $i \in T$, we find $j \in U$ within a bandwidth h :

- Take all untreated units $j \in U$ with $x_{j} \in\left[X_{i}-h, X_{i}+h\right]$
- Now your "counterfactual" is $\hat{Y}_{i}(0)=\bar{Y}_{j}\left(0 ; X_{i}-h \leq X_{j} \leq X_{i}+h\right)$
- Repeat this for all treated units $i \in T$

$$
\hat{\tau}^{A T T}=\frac{1}{N_{T}} \sum_{i \in T}\left(Y_{i}(1)-\hat{Y}_{i}(0)\right)
$$

Bandwidth matching

For each $i \in T$, we find $j \in U$ within a bandwidth h :

- Take all untreated units $j \in U$ with $x_{j} \in\left[X_{i}-h, X_{i}+h\right]$
- Now your "counterfactual" is $\hat{Y}_{i}(0)=\bar{Y}_{j}\left(0 ; X_{i}-h \leq X_{j} \leq X_{i}+h\right)$
- Repeat this for all treated units $i \in T$

$$
\hat{\tau}^{A T T}=\frac{1}{N_{T}} \sum_{i \in T}\left(Y_{i}(1)-\hat{Y}_{i}(0)\right)
$$

- How do you choose a bandwidth?
- Narrow: we'll get an accurate, but noisy estimate (similar Xs, few observations)
- Wide: we'll get an inaccurate, but precise estimate (different $X \mathrm{~s}$, many observations)
\rightarrow We face a bias-variance tradeoff
\rightarrow There are fancy tools for this (outside this class)

Getting "close" with bandwidths

A note on what we're estimating

For all three matching estimators, we can estimate ATE, ATT, or ATN:

- The trick is to make sure we know which one we're getting
- Exact matching:
- ATE: weight relative to the full sample: $\hat{\Delta}^{\text {ATE }}=\sum_{j=1}^{\# \text { of cells }} \frac{N_{j}}{N} \hat{\Delta}_{j}$
- ATT: weight relative to the treated sample:
$\hat{\Delta}^{A T T}=\sum_{k=1}^{\# \text { of treated cells }} \frac{N_{k, T}}{N_{T}} \hat{\Delta}_{k}$
- ATN: weight relative to the untreated sample:

- Nearest neighbor and bandwidth matching:
- ATT: For each treated unit, find untreated matches:
$\hat{\tau}^{A T T}=\frac{1}{N_{T}} \sum_{i \in T}\left(Y_{i}(1)-\hat{Y}_{i}(0)\right)$
- ATN: For each untreated unit, find treated matches:
$\hat{\tau}^{A T N}=\frac{1}{N_{U}} \sum_{i \in U}\left(\hat{Y}_{i}(1)-Y_{i}(0)\right)$
- ATE: Weight the ATT and ATN: $\hat{\tau}^{A T E}=\frac{N_{T}}{N_{T}+N_{U}} \hat{\tau}^{A T T}+\frac{N_{N}}{N_{T}+N_{U}} \hat{\tau}^{A T N}$

An example: Appliance replacements in Mexico

Policy issue:

- Energy efficiency is seen as a "win-win":
- Customers "win" by saving on their power bills
- The planet "wins" because we reduce GHGs
- But does EE actually work?

Program:

- Mexican government subsidized HVAC and fridge replacements
- Cute title: "Cash for coolers"
- Non-experimental program:
- If you had an old appliance, you were eligible
\rightarrow We don't have randomization, so we need an SOO design

Estimating treatment effects of appliance replacements

What happens to energy consumption with a replacement (simplified)?

$$
Y_{i}=\tau D_{i}+\varepsilon_{i}
$$

where
Y_{i} is kWh of electricity use at household i
$D_{i}=\mathbf{1}$ [New appliance] ${ }_{i}$ is an indicator for getting an upgrade
ε_{i} is an error term

Estimating treatment effects of appliance replacements

What happens to energy consumption with a replacement (simplified)?

$$
Y_{i}=\tau D_{i}+\varepsilon_{i}
$$

where
Y_{i} is kWh of electricity use at household i
$D_{i}=\mathbf{1}[\text { New appliance }]_{i}$ is an indicator for getting an upgrade
ε_{i} is an error term
This is not an experiment: we need a control group! A few options...
(1) Treated vs. randomly selected untreated households
(2) Only treated households (leverages time comparison - more on that later!)
(3) Matched: account numbers

- Think of this as NN or BW matching
(4) Matched: 10 closest account numbers plus consumption
- BW on accounts, NN on consumption

Mexican appliances: How well does matching work?

Figure 2A. Comparing Participants to Nonparticipants: Refrigerators

Mexican appliances: Untreated consumption patterns

Mexican appliances: Treatment effects

Mexican appliances: Policy implications

Table 6-Electricity Expenditures, Carbon Dioxide Emissions, and Cost-Effectiveness
$\left.\begin{array}{lccc}\hline \hline & & \begin{array}{c}\text { Air } \\ \text { Refrigerators } \\ (1)\end{array} & \begin{array}{c}\text { Both } \\ \text { appliances } \\ \text { combitioned } \\ (2)\end{array} \\ \hline \text { (3) }\end{array}\right]$

Notes: Mean annual change in electricity consumption per replacement comes from column 4 of Table 4 . Change in expenditures is calculated using an average price of $\$ 0.096$ per kilowatt hour. Carbon dioxide emissions are calculated using 0.538 tons of carbon dioxide per megawatt hour (538 tons per gigawatt hour) following Johnson et al. (2009). Direct program cost is the dollar value of the cash subsidies and excludes administrative costs. In calculating the program cost per kilowatt hour and program cost per ton of carbon dioxide we assumed that the program accelerated replacement by five years and used a 5 percent annual discount rate.

Wrapping up SOO

We've covered the two main ways of doing SOO
(1) Regression adjustment

- Controlling for stuff
- Makes parametric assumptions
(2) Matching
- Pairing observations
- Less parametric

Wrapping up SOO

We've covered the two main ways of doing SOO
(1) Regression adjustment

- Controlling for stuff
- Makes parametric assumptions
(2) Matching
- Pairing observations
- Less parametric

A few last words:

- There are other, fancier ways to do this
- All make the extremely strong conditional independence assumption
\rightarrow This is generally not reasonable in real life!
\rightarrow We will end our treatment of SOO here

Recap

TL;DR:

(1) Selection on observables designs are dubious
(2) They require extremely strong assumptions!
(3) But as a last resort, matching can be useful

