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From last time: we can handle non-compliance

What can we estimate with non-compliance?

• ITT: Ȳ (Ri = 1)− Ȳ (Ri = 0)

• LATE: Ȳ (Ri=1)−Ȳ (Ri=0)
πC

• Under constant treatment effects: equal to ATE, ATT

• With heterogeneous treatment effects: need not equal ATE or ATT
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There are many interesting flavors of RCT

Experimental designs for ease of implementation:

Oversubscription design

• You only have budget to treat N units. Start with a pool of 2N, and
randomly select half.

• Attractive for policymakers with concerns about equity

Randomized roll-out design

• You’re eventually going to treat everyone, but can’t treat everyone
immediately. Randomly assign half of your units to get treatment first;
wait long enough to treat the second half to measure impacts.

• Attractive for policymakers with concerns about equity

Randomized encouragement design (we’ve seen this already!)

• Layer randomization on top of something already available to everyone,
to encourage take-up.

• Attractive for policymakers with concerns about equity
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There are many interesting flavors of RCT

Experimental designs for ease of estimation:

Stratified design

• Randomize within a group (e.g. gender; rural/urban status; etc)

• Ensures balance on stratified variables

• Increases statistical power

• Estimation: include strata fixed effects (required with P ∕= 0.5)

• Most stringent version: pair-wise matched randomization

Cluster-randomized design

• Do group-level, rather than unit-level, randomization

• Mitigates concerns about spillovers

• Can be useful from an equity perspective

Randomized saturation design

• Two-step design to estimate spillovers
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There are many interesting flavors of RCT

Experimental designs for the sake of implementation:

• Oversubscription design

• Randomized roll-out design

• Randomized encouragement design

Experimental designs for the sake of estimation:

• Stratified design

• Randomized saturation design

→ These both help us think about spillovers
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We typically invoke a no-spillovers assumption

The Stable Unit Treatment Value Assumption (SUTVA):

• Has an awkward name

• Formally says:

If Di = D
′
i , then Yi (D) = Yi (D

′
)

• In words:
Treatment status of all other units j doesn’t affect potential
outcomes of unit i

• In other words: no spillovers

This has been running around behind everything we’ve done so far!
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What goes wrong when SUTVA is violated?

Consider a randomized typhoid vaccination campaign:

• No intervention with control individuals

• Treated individuals are vaccinated

• Outcomes of interest: disease prevalence

• ... but vaccinating T impacts disease rate in C!

• So now: disease(Di = 1) ↓ and disease(Di = 0) ↓

If we estimate the treatment effect as disease(1)− disease(0), we
underestimate treatment

This messes us up!
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Illustrating SUTVA issues with fake data

Vaccinated Unvaccinated

Direct effects -0.9 0
Spillover effects 0 -0.5
Total treatment effect -0.9 -0.5

Measuring τ̂ATE as Ȳ (1)− Ȳ (0) = −0.9 + 0.5 = −0.4...

... but τATE = −0.9!

PPHA 34600 Program Evaluation Lecture 05 7 / 33



Illustrating SUTVA issues with fake data

Vaccinated Unvaccinated

Direct effects -0.9 0
Spillover effects 0 -0.5
Total treatment effect -0.9 -0.5

Measuring τ̂ATE as Ȳ (1)− Ȳ (0) = −0.9 + 0.5 = −0.4...

... but τATE = −0.9!

PPHA 34600 Program Evaluation Lecture 05 7 / 33



How do we deal with this?

Unlike with non-compliance, there’s no nice stats trick, but you can still:

1 Treat your ATE as an upper (lower) bound

• This is often still useful! Think the true effect is 0, but with SUTVA
you estimate 0.001?

2

Design your RCT to avoid these concerns

• “Cluster-randomized” designs are common

• Instead of randomizing individuals, randomize villages or markets

• Choose clusters far away from each other to minimize SUTVA issues

3

Design your RCT to measure spillovers

• We often care a lot about the size of spillovers
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Randomized saturation design

These designs have two randomization steps:

1 Randomize clusters into treatment intensities (including pure control)

• Lets us compare high-vs.-low intensity places

2 Randomize units within clusters

• Lets us compare treatment-vs.-control units
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Randomized saturation design: cartoon edition
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Randomized saturation design: formally

A little bit of math can help clarify what we’re doing:

• Start with N individuals who live in C (disjoint) clusters

• Step 1: Randomly assign clusters a treatment saturation πc ∈ [0, 1]

→ Choose from a pre-determined set of saturations! (eg π ∈ {0.25, 0.75})

→ You also need to have a pure control cluster: πc = 0

• Step 2: In each cluster, randomly assign πc ·Nc units into treatment

→ Now Dic is the treatment status for unit i in cluster c

This results in three types of units:

• Treated individual: Dic = 1 as usual
→ Share in sample: µ

• Pure control: Dic = 0 and πc = 0
→ Share in sample: µ

• Within-cluster control: Dic = 0 and πc > 0
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RS designs open the door to new treatment parameters

In the most general model:

Yic = f (Dic ,Djc ;Xic , εic)

In words: Yic depends on both Dic and Djc

→ This allows SUTVA violations

To make the RS design useful, we impose a restriction:

Yic ⊥ Djd for all d ∕= c

• In words: i ’s potential outcome is unaffected by other-cluster units

• In other words: There is no cross-cluster interference

• Note that Yic can still depend on Yjc for i ∕= j
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RS designs open the door to new treatment parameters

Intent to treat (ITT):

τ ITT (π) = E [Yic |Dic = 1,πc = π]− E [Yic |Dic = 0,πc = 0]

→ Difference between those offered treatment and pure controls

→ Why don’t we compare with Dic = 0,πc = π?

→ τ ITT (π) = τATE (π) with perfect compliance

Spillover on the non-treated (SNT):

τSNT (π) = E [Yic |Dic = 0,πc = π]− E [Yic |Dic = 0,πc = 0]

→ Difference between control units in treated clusters and pure controls

Total causal effect (TCE):

τTCE (π) = E [Yic |πc = π]− E [Yic |πc = 0] = πτ ITT (π) + (1− π)τSNT (π)

→ Overall cluster difference between treated and control clusters

→ Dic = 1,πc > 0 units get τ ITT ; Dic = 0,πc > 0 units get τSNT

PPHA 34600 Program Evaluation Lecture 05 13 / 33



RS designs open the door to new treatment parameters

Intent to treat (ITT):

τ ITT (π) = E [Yic |Dic = 1,πc = π]− E [Yic |Dic = 0,πc = 0]

→ Difference between those offered treatment and pure controls

→ Why don’t we compare with Dic = 0,πc = π?

→ τ ITT (π) = τATE (π) with perfect compliance

Spillover on the non-treated (SNT):

τSNT (π) = E [Yic |Dic = 0,πc = π]− E [Yic |Dic = 0,πc = 0]

→ Difference between control units in treated clusters and pure controls

Total causal effect (TCE):

τTCE (π) = E [Yic |πc = π]− E [Yic |πc = 0] = πτ ITT (π) + (1− π)τSNT (π)

→ Overall cluster difference between treated and control clusters

→ Dic = 1,πc > 0 units get τ ITT ; Dic = 0,πc > 0 units get τSNT

PPHA 34600 Program Evaluation Lecture 05 13 / 33



RS designs open the door to new treatment parameters

Intent to treat (ITT):

τ ITT (π) = E [Yic |Dic = 1,πc = π]− E [Yic |Dic = 0,πc = 0]

→ Difference between those offered treatment and pure controls

→ Why don’t we compare with Dic = 0,πc = π?

→ τ ITT (π) = τATE (π) with perfect compliance

Spillover on the non-treated (SNT):

τSNT (π) = E [Yic |Dic = 0,πc = π]− E [Yic |Dic = 0,πc = 0]

→ Difference between control units in treated clusters and pure controls

Total causal effect (TCE):

τTCE (π) = E [Yic |πc = π]− E [Yic |πc = 0] = πτ ITT (π) + (1− π)τSNT (π)

→ Overall cluster difference between treated and control clusters

→ Dic = 1,πc > 0 units get τ ITT ; Dic = 0,πc > 0 units get τSNT

PPHA 34600 Program Evaluation Lecture 05 13 / 33



RS designs open the door to new treatment parameters

Intent to treat (ITT):

τ ITT (π) = E [Yic |Dic = 1,πc = π]− E [Yic |Dic = 0,πc = 0]

→ Difference between those offered treatment and pure controls

→ Why don’t we compare with Dic = 0,πc = π?

→ τ ITT (π) = τATE (π) with perfect compliance

Spillover on the non-treated (SNT):

τSNT (π) = E [Yic |Dic = 0,πc = π]− E [Yic |Dic = 0,πc = 0]

→ Difference between control units in treated clusters and pure controls

Total causal effect (TCE):

τTCE (π) = E [Yic |πc = π]− E [Yic |πc = 0] = πτ ITT (π) + (1− π)τSNT (π)

→ Overall cluster difference between treated and control clusters

→ Dic = 1,πc > 0 units get τ ITT ; Dic = 0,πc > 0 units get τSNT

PPHA 34600 Program Evaluation Lecture 05 13 / 33



We can break the ITT down into two components

1 Direct effect of treatment:

• AKA the Treatment on the Uniquely Treated (TUT):

τTUT = E [Yic |Dic = 1,πc = 0]− E [Yic |Dic = 0πc = 0] = τ ITT (πc = 0)

→ this is the ITT were we to only treat one unit (no spillovers!)

→ Note that this isn’t a function of π

2

Spillover effect of treatment:

• AKA the Spillover on the Treated (ST):

τST (π) = E [Yic |Dic = 1,πc = π]− E [Yic |Dic = 1πc = 0]

→ this is the saturation-dependent spillover effect (only spillovers!)

τ ITT (π) = τTUT + τST (π)
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Estimation in the RSD

Though these parameters are complicated, estimation is easy:

Yic = α+
󰁛

π ∕=0

τ trtDic · 1[πc = π] +
󰁛

π ∕=0

τ ctrlSic · 1[πc = π] + εic

where:
Yic is the outcome for unit i in group c
Dic · 1[πc = π] is an indicator for a treated unit with saturation πc
Sic · 1[πc = π] is an indicator for a control unit with saturation πc
εic is an error term

→ All groups are compared to pure controls
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Computing relevant parameters

From this estimating equation:

Yic = α+
󰁛

π ∕=0

τ trtDic · 1[πc = π] +
󰁛

π ∕=0

τ ctrlSic · 1[πc = π] + εic

We can get many parameters of interest:

τ̂ ITT (π) = τ̂ trtπ

τ̂SNT (π) = τ̂ ctrlπ

τ̂TCE (π) = πτ̂ trtπ + (1− π)τ̂ ctrlπ

The randomized saturation design enables us to estimate spillover
effects!
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An example: Timed loans for Kenyan maize farmers

Policy issue:

• Farmers are selling corn when prices are low and buying when high

• This causes large welfare losses

Program:

• Farmers were (randomly) offered a storage-linked loan at harvest

• Research question:
What is the effect of the loan on the use of storage for arbitrage?

→ Why do we care about spillovers here?

The authors implement a randomized saturation design
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Randomized saturation design: Kenyan maize edition
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Estimating treatment effects: Kenyan maize edition

The authors estimate (a slightly extended version of):

Yij = α+ βTj + εij

where:
Yij is the outcome for person i in group j
Tj is a treatment indicator
εij is an error term

→ What treatment parameter of interest does β̂ capture?
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The ever-important balance check
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ITT results: Number of maize bags stored
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ITT results: Number of maize bags stored
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ITT results: Net revenue (Ksh)
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ITT results: Net revenue by month
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ITT results: Household consumption (logs)
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ITT results: Household consumtion by month
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Going beyond the ITT: Kenyan maize edition

We want to know about effects on markets (not just people):

pmst = α+ β1Hs + β2montht + β3(Hs ×montht) + εmst

where:
pmst is the price in market m, sublocation s, month t
Hs is an indicator for high-intensity sublocations
montht is a monthly time trend
εij is an error term

This estimating equation exploits the RS design to measure
differential effects by saturation!
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ITT results: Market prices
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ITT results: Market prices by month
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Given the price effects, what happens to everything else?

How do treatment effects vary with intensity?

Yijs = α+ β1Tj + β2Hs + β3(Tj × Hs) + εijs

• Same LHS var as the ITT, but now separately by intensity
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General equilibrium effects
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General equilibrium effects
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Recap

TL;DR:

1 RCTs are (still) great!

2 Spillovers make things complicated

3 We can still make progress on (some) treatment parameters
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