# Lecture 03: Randomized controlled trials I

#### **PPHA 34600**

Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

### From last time: selection is an issue

Recall that there are lots of things we want to estimate.

We need to get around selection bias to do this.

In other words, we need:

$$E[Y_i(1)] = E[Y_i(1)|D_i = 1] = E[Y_i(1)|D_i = 0]$$

and

$$E[Y_i(0)] = E[Y_i(0)|D_i = 0] = E[Y_i(0)|D_i = 1]$$

Regression equivalent:

$$E[\varepsilon_i|D_i]=0$$

### Random assignment as a solution

When treatment status is randomly assigned,

$$F(X, \varepsilon | D = 1) = F(X, \varepsilon | D = 0) = F(X, \varepsilon)$$

#### In words:

The distribution of **both** observables (Xs) **and** unobservables ( $\varepsilon$ s) is the same for treated and untreated units!

There is **no selection problem** by construction!

# Again, but mathier

When *D*, treatment, is **randomly assigned**:

- D is independent of Y(0) and Y(1)
- The distribution of  $Y_i(0)|D_i$  is equal to the unconditional distribution
- The distribution of  $Y_i(1)|D_i$  is equal to the unconditional distribution
- $E[Y_i(1)|D_i=1]=E[Y_i(1)]$
- $E[Y_i(0)|D_i=0] = E[Y_i(0)]$

# Again, but mathier

#### When *D*, treatment, is **randomly assigned**:

- D is independent of Y(0) and Y(1)
- The distribution of  $Y_i(0)|D_i$  is equal to the unconditional distribution
- The distribution of  $Y_i(1)|D_i$  is equal to the unconditional distribution
- $E[Y_i(1)|D_i=1]=E[Y_i(1)]$
- $E[Y_i(0)|D_i=0] = E[Y_i(0)]$

#### As a result:

$$\tau^{ATE} = E[Y_i(1)] - E[Y_i(0)]$$

$$= E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 0]$$

$$= E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

# This bears repeating

#### **Under randomization:**

$$\tau^{ATE} = E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

# This bears repeating

#### **Under randomization:**

$$\tau^{ATE} = E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

We can easily estimate this from data:

$$\hat{\tau}^{ATE} = \overline{Y(1)} - \overline{Y(0)}$$

We can estimate the ATE simply from the difference in means between treated and "control" group.

# This bears repeating

#### **Under randomization:**

$$\tau^{ATE} = E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

We can easily estimate this from data:

$$\hat{\tau}^{ATE} = \overline{Y(1)} - \overline{Y(0)}$$

We can estimate the ATE simply from the difference in means between treated and "control" group.

Obvious (?) caveat: We still can't get  $\tau_i$ , because we only observe i once.

PPHA 34600 Program Evaluation Lecture 03 4 / 32

# Evaluating an RCT

#### This is not a class on how to do RCTs

- As always, the devil is in the details
- Field experiments are hard!
- But supposing you've got one...

# Evaluating an RCT

#### This is not a class on how to do RCTs

- As always, the devil is in the details
- Field experiments are hard!
- But supposing you've got one...

#### Basic RCT checklist

- ☐ Verify random assignment
- ☐ Check compliance with treatment
- ☐ Estimate the ATE (or other things...)

### What is this experiment trying to learn?

When running an RCT, you want to have a "research question" in mind:

What is the causal effect of [program x] on [outcome y]?

### What is this experiment trying to learn?

When running an RCT, you want to have a "research question" in mind:

What is the causal effect of [program x] on [outcome y]?

Why do we need an RCT to study this?

# What is this experiment trying to learn?

When running an RCT, you want to have a "research question" in mind:

What is the causal effect of [program x] on [outcome y]?

Why do we need an RCT to study this?

- Program X targets certain individuals
- Individuals who choose to participate look different than non-participants
- Others?

# **Understanding RCTs**

#### Basic ingredients for an RCT:

- What is the research design?
  - What is the unit of randomization?
  - How was randomization performed?
- What are the outcomes of interest?

# Verifying random assignment

#### Did randomization "work"?

- Randomization should mean treated and control units are similar
- This is true in expectation, not necessarily for one draw

# Verifying random assignment

#### Did randomization "work"?

- Randomization should mean treated and control units are similar
- This is true in expectation, not necessarily for one draw

#### Testing whether randomization was effective:

- We want T and C to be similar on observables and unobservables
- We can only test this for observables
- To check this, we "test for balance":
- Compare mean outcomes for T vs. C at baseline (before treatment) or in fixed characteristics
  - $\rightarrow$  Implementation: Regress  $Y_i^{baseline} = \alpha + \tau D_i + \nu_i$

# Checking for balance

#### Three things to check for:

- Did they test for all outcome variables?
- 2 Are differences statistically significant?
- 3 Are magnitudes economically meaningful?

# Checking compliance with treatment

#### Did assignment to treatment affect treatment status?

### Trying to verify whether...

- Units assigned to treatment were actually treated
- Units assigned to control were not treated

There is often substantial non-compliance. We'll talk more about exactly how to deal with this issue next time.

### Thinking about non-compliance

We will treat this more formally next time

For now, non-compliance changes the interpretation of our estimates:

Rather than asking "What does treatment do to our outcome activities?"...

... we're asking "What does offering treatment do to our outcome?"

This may be the policy-relevant quantity

### We want to estimate the ATE

Recall that the ATE is just:

$$\tau^{ATE} = E[Y_i(1)] - E[Y_i(0)]$$

Since we have random assignment, we can estimate this as:

$$\hat{\tau}^{ATE} = \overline{Y(1)} - \overline{Y(0)}$$

### We want to estimate the ATE

Recall that the ATE is just:

$$\tau^{ATE} = E[Y_i(1)] - E[Y_i(0)]$$

Since we have random assignment, we can estimate this as:

$$\hat{\tau}^{ATE} = \overline{Y(1)} - \overline{Y(0)}$$

Regression is a convenient way to do this:

$$Y_i = \alpha + \tau D_i + \varepsilon_i$$

Since our  $E[\varepsilon|D_i]=0$  assumption is satisfied (why?),  $\hat{\tau}=\hat{\tau}^{ATE}$ 

# Estimating treatment effects

We'll often see things that look like this:

$$y_{ia} = \alpha + \tau Treat_{ia} + \gamma \mathbf{X}_{a}^{\mathsf{baseline}} + \varepsilon_{ia}$$

#### where:

- y<sub>ia</sub> are outcomes for household i in area a
- $\alpha$  is a constant
- $Treat_{ia}$  is a treatment dummy (think  $D_i$ )
- X<sup>baseline</sup> is a set of baseline area controls
- $\varepsilon_{ia}$  is an error term

# What is this equation estimating?

$$y_{ia} = \alpha + \tau \operatorname{Treat}_{ia} + \gamma \mathbf{X}_{a}^{\mathsf{baseline}} + \varepsilon_{ia}$$

### This differs from our basic regression a bit:

- There's an i and an a
- ullet We have  $\gamma \mathbf{X}_a^{\mathrm{baseline}}$

Let's unpack each of these in turn...

# Randomization by area, data on individuals

We have i-ndividual level data, but a-rea level randomization

#### Randomizing at a higher level of aggregation is common:

- Some questions can't be answered at i level (no personal bank branches)
- Ethics concerns: can sometimes delay implementation for a whole group; hard for individuals
- Reduce spillovers (more on this later)

# Randomization by area, data on individuals

We have i-ndividual level data, but a-rea level randomization

#### Randomizing at a higher level of aggregation is common:

- Some questions can't be answered at i level (no personal bank branches)
- Ethics concerns: can sometimes delay implementation for a whole group; hard for individuals
- Reduce spillovers (more on this later)

#### Randomizing at a higher level affects the analysis:

- Interpretation is different (what exactly is treatment?)
- Getting standard errors right requires either:
  - 1 Estimate *i*-level effects, but cluster at *a*-level or
  - Averaging outcomes at the group level (weight by individuals per group)

If  $D_i$  is randomly assigned, we don't need  $X_i$ !

If  $D_i$  is randomly assigned, we don't need  $X_i$ !

- Controlling for  $X_i$  should not affect  $\hat{\tau}$ 
  - → Why?

### If $D_i$ is randomly assigned, we don't need $X_i$ !

- Controlling for  $X_i$  should not affect  $\hat{\tau}$ 
  - → Why?
- Controlling for  $X_i$  will affect the standard error on  $\hat{\tau}$ 
  - $\rightarrow$  Why?

#### If $D_i$ is randomly assigned, we don't need $X_i$ !

- Controlling for  $X_i$  should not affect  $\hat{\tau}$ 
  - → Why?
- Controlling for  $X_i$  will affect the standard error on  $\hat{\tau}$ 
  - $\rightarrow$  Why?
- 🙎 do **not** control for post-treatment outcomes

# Adding bad controls

#### First rule of RCT club:

- Do **not** control for post-treatment outcomes
- Do **not** control for post-treatment outcomes
- → If treatment affects these outcomes, you can get bias!

#### Simple example:

- Suppose microfinance impacts business ownership
- By random assignment, households with and without loans have the same potential income
- Once we condition on business ownership, this is no longer true!

|                   | Potential<br>business ownership |            | Potential income |            | Average earnings<br>by ownership |            |
|-------------------|---------------------------------|------------|------------------|------------|----------------------------------|------------|
| Type of household | Without<br>MF                   | With<br>MF | Without<br>MF    | With<br>MF | Without<br>MF                    | With<br>MF |
| Never owner       | No                              | No         | 1,000            | 1,500      |                                  |            |
| Moved by MF       | No                              | Yes        | 2,000            | 2,500      | ·                                |            |
| Always owner      | Yes                             | Yes        | 3,000            | 3,500      |                                  |            |

|                   | Potential business ownership |            | Potential income |            | Average earnings<br>by ownership |                     |
|-------------------|------------------------------|------------|------------------|------------|----------------------------------|---------------------|
| Type of household | Without<br>MF                | With<br>MF | Without<br>MF    | With<br>MF | Without<br>MF                    | With<br>MF          |
| Never owner       | No                           | No         | 1,000            | 1,500      | Don't own:                       | Don't own:<br>1,500 |
| Moved by MF       | No                           | Yes        | 2,000            | 2,500      | 1,500                            | Own:                |
| Always owner      | Yes                          | Yes        | 3,000            | 3,500      | Own:<br>3,000                    | 3,000               |

|                   | Potential business ownership |            | Potential income |            | Average earnings<br>by ownership |                     |
|-------------------|------------------------------|------------|------------------|------------|----------------------------------|---------------------|
| Type of household | Without<br>MF                | With<br>MF | Without<br>MF    | With<br>MF | Without<br>MF                    | With<br>MF          |
| Never owner       | No                           | No         | 1,000            | 1,500      | Don't own:<br>1,500              | Don't own:<br>1,500 |
| Moved by MF       | No                           | Yes        | 2,000            | 2,500      | 1,500                            | Own:                |
| Always owner      | Yes                          | Yes        | 3,000            | 3,500      | Own:<br>3,000                    | 3,000               |

- The return to MFI is 500 for everyone...
- But once we condition on ownership, it looks like the return is 0!
- → This is because we don't have random assignment within ownership!

|                   | Potential business ownership |            | Potential income |            | Average earnings<br>by ownership |                     |
|-------------------|------------------------------|------------|------------------|------------|----------------------------------|---------------------|
| Type of household | Without<br>MF                | With<br>MF | Without<br>MF    | With<br>MF | Without<br>MF                    | With<br>MF          |
| Never owner       | No                           | No         | 1,000            | 1,500      | Don't own:<br>1,500              | Don't own:<br>1,500 |
| Moved by MF       | No                           | Yes        | 2,000            | 2,500      | 1,500                            | Own:                |
| Always owner      | Yes                          | Yes        | 3,000            | 3,500      | Own:<br>3,000                    | 3,000               |

- The return to MFI is 500 for everyone...
- But once we condition on ownership, it looks like the return is 0!
- → This is because we don't have random assignment **within** ownership!

#### Do not control for post-treatment outcomes!

# We can also estimate heterogeneous effects

Heterogeneous effects are straightforward:

$$\tau(X_1 = x_1) = E[Y_i(1)|X_1 = x_1] - E[Y_i(0)|X_1 = x_1]$$

# We can also estimate heterogeneous effects

Heterogeneous effects are straightforward:

$$\tau(X_1 = x_1) = E[Y_i(1)|X_1 = x_1] - E[Y_i(0)|X_1 = x_1]$$

We typically estimate these in two ways:

**1** Add an **interaction term** to the regression:

$$y_i = \alpha + \tau \operatorname{Treat}_i + \gamma \operatorname{Treat}_i \cdot X_i + \delta X_i + \varepsilon_i$$

→ Make sure to add both the interaction and the base term

# We can also estimate heterogeneous effects

Heterogeneous effects are straightforward:

$$\tau(X_1 = x_1) = E[Y_i(1)|X_1 = x_1] - E[Y_i(0)|X_1 = x_1]$$

We typically estimate these in two ways:

1 Add an interaction term to the regression:

$$y_i = \alpha + \tau \operatorname{Treat}_i + \gamma \operatorname{Treat}_i \cdot X_i + \delta X_i + \varepsilon_i$$

- → Make sure to add both the interaction and the base term
- Estimate the regression separately by heterogeneity
  - → Equivalent to a *fully* interacted model

Estimate heterogeneity by pre-determined characteristics only!

# A note on assumptions for the RCT

## We still need several assumptions for the RCT to work:

- $E[Y_i(1)|D_i=1] = E[Y_i(1)|D_i=0]$ and  $E[Y_i(0)|D_i=1] = E[Y_i(0)|D_i=0]$ 
  - → We "get this" via randomization, but only in expectation

# A note on assumptions for the RCT

## We still need several assumptions for the RCT to work:

- $E[Y_i(1)|D_i=1] = E[Y_i(1)|D_i=0]$ and  $E[Y_i(0)|D_i=1] = E[Y_i(0)|D_i=0]$ 
  - → We "get this" via randomization, but only in expectation
- Perfect compliance
  - → Kinda. More on this next class

# A note on assumptions for the RCT

## We still need several assumptions for the RCT to work:

- $E[Y_i(1)|D_i=1] = E[Y_i(1)|D_i=0]$ and  $E[Y_i(0)|D_i=1] = E[Y_i(0)|D_i=0]$ 
  - → We "get this" via randomization, but only in expectation
- Perfect compliance
  - → Kinda. More on this next class
- No spillovers: "SUTVA"
  - Stable Unit Treatment Value Assumption: D<sub>i</sub> doesn't affect j's potential outcomes
  - → Kinda. More on this in two classes

# Application: Audits of polluting firms

Duflo, Greenstone, Pande, and Ryan (QJE 2013)

## Policy challenge:

- Pollution from industrial plants is very high in Gujarat
- Auditors responsible for monitoring are paid by the polluting firms (!)

### Intervention:

- Firms pay into an independent account
- · Auditors are randomly assigned to firms
- Some firms were visited for back-checks

# Pollution audits in Gujarat: The experiment

→ Lesson for you as MPPs: RCTs are doable in high-stakes contexts!

## This is a stratified randomization design:

- Sample: 633 high-polluting plants
- Stratification on region
- 50% of firms were randomized into treatment group
- Ineligible plants eliminated after randomization
- 20% of plant readings got back-checks

## Outcomes of interest

Outcome data measured throughout 2009-10 and at endline Outcomes of interest:

- ullet Pollution levels ightarrow regulatory compliance
- Pollution levels relative to back-checks ("truth-telling")

## Balance?

|                                            | (1)       | (2)     | (3)        |
|--------------------------------------------|-----------|---------|------------|
|                                            | Treatment | Control | Difference |
| Panel A: Plant characteristics             |           |         |            |
| Capital investment INR 50 m to 100 m (= 1) | 0.092     | 0.14    | -0.051     |
|                                            | [0.29]    | [0.35]  | (0.033)    |
| Located in industrial estate (= 1)         | 0.57      | 0.53    | 0.042      |
|                                            | [0.50]    | [0.50]  | (0.051)    |
| Textiles (= 1)                             | 0.88      | 0.93    | -0.030     |
|                                            | [0.33]    | [0.26]  | (0.025)    |
| Effluent to common treatment (= 1)         | 0.41      | 0.35    | 0.078      |
|                                            | [0.49]    | [0.48]  | (0.049)    |
| Wastewater generated (kl/day)              | 420.5     | 394.6   | 35.4       |
|                                            | [315.9]   | [323.4] | (31.6)     |
| Lignite used as fuel (= 1)                 | 0.71      | 0.77    | -0.024     |
|                                            | [0.45]    | [0.42]  | (0.029)    |
| Diesel used as fuel (= 1)                  | 0.29      | 0.25    | 0.038      |
|                                            | [0.45]    | [0.43]  | (0.046)    |
| Air emissions from flue gas (= 1)          | 0.85      | 0.87    | -0.0095    |
|                                            | [0.35]    | [0.33]  | (0.016)    |
| Air emissions from boiler (= 1)            | 0.93      | 0.92    | 0.026      |
|                                            | [0.26]    | [0.27]  | (0.027)    |
| Bag filter installed (= 1)                 | 0.24      | 0.34    | -0.10**    |
|                                            | [0.43]    | [0.47]  | (0.046)    |
| Cyclone installed (= 1)                    | 0.087     | 0.079   | 0.0010     |
|                                            | [0.28]    | [0.27]  | (0.027)    |
| Scrubber installed (= 1)                   | 0.41      | 0.41    | -0.018     |
|                                            | [0.49]    | [0.49]  | (0.050)    |

## Balance?

Panel B: Regulatory interactions in year prior to study

| Whether audit submitted (= 1)   | 0.82   | 0.81    | 0.022   |
|---------------------------------|--------|---------|---------|
|                                 | [0.38] | [0.39]  | (0.038) |
| Any equipment mandated (= 1)    | 0.42   | 0.49    | -0.047  |
|                                 | [0.50] | [0.50]  | (0.047) |
| Any inspection conducted (= 1)  | 0.79   | 0.78    | 0.016   |
|                                 | [0.41] | [0.42]  | (0.042) |
| Any citation issued (= 1)       | 0.28   | 0.24    | 0.035   |
|                                 | [0.45] | [0.43]  | (0.045) |
| Any water citation issued (= 1) | 0.12   | 0.12    | -0.0031 |
|                                 | [0.33] | [0.33]  | (0.034) |
| Any air citation issued (= 1)   | 0.027  | 0.0052  | 0.021*  |
|                                 | [0.16] | [0.072] | (0.013) |
| Any utility disconnection (= 1) | 0.098  | 0.094   | 0.0029  |
|                                 | [0.30] | [0.29]  | (0.031) |
| Any bank guarantee posted (= 1) | 0.033  | 0.026   | 0.0045  |
|                                 | [0.18] | [0.16]  | (0.017) |
|                                 |        |         |         |

PPHA 34600 Program Evaluation Lecture 03 25 / 32

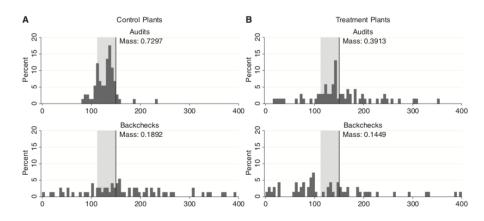
# Compliance?

### Noncompliance not an issue here:

Overall, we collected 2,953 pollution samples from 408 plants in the study sample, an average of 7.2 pollutants per plant.  $^{15}$  Attrition in the endline survey was balanced across treatment and control groups.  $^{16}$ 

PPHA 34600 Program Evaluation Lecture 03 26 / 32

## Regression specification and parameters of interest


These authors estimate (a slightly more complicated version of):

$$y_{ir} = \alpha + \tau D_{ir} + \alpha_r + \varepsilon_{ir}$$

### where:

- $y_{ir}$  is the outcome for firm i in region r
- α is a constant
- D<sub>ir</sub> is a treatment indicator
- $\alpha_r$  is a fixed effect for region
- $\varepsilon_{ir}$  is an error term

# **Findings**



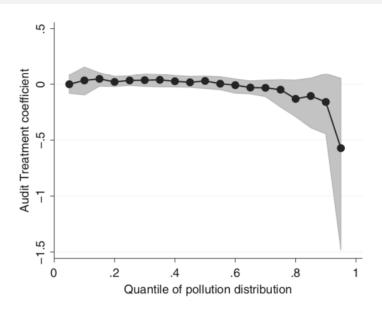
# **Findings**

ENDLINE POLLUTANT CONCENTRATIONS ON TREATMENT STATUS

|                                                                          | (1)<br>All | (2)<br>Water  | (3)               |
|--------------------------------------------------------------------------|------------|---------------|-------------------|
|                                                                          | pollutants | pollutants    | Air<br>pollutants |
| Panel A: Dependent variable: Level<br>pollutants (standard deviations re |            |               | ey, all           |
| Audit treatment assigned (= 1)                                           | -0.211**   | -0.300*       | -0.053            |
|                                                                          | (0.099)    | (0.159)       | (0.057)           |
| Control mean                                                             | 0.076      | 0.114         | 0.022             |
| Observations                                                             | 1439       | 860           | 579               |
| Panel B: Dependent variable: Comp<br>survey at or below regulatory star  |            | for pollutant | in endline        |
| Audit treatment assigned (=1)                                            | 0.027      | 0.039         | 0.002             |
|                                                                          | (0.027)    | (0.039)       | (0.028)           |
| Control mean                                                             | 0.573      | 0.516         | 0.656             |
| Observations                                                             | 1,439      | 860           | 579               |

## **Findings**

#### Compliance in Audits Relative to Backchecks by Treatment Status


|                                                                        | (1)<br>All<br>pollutants | (2)<br>Water<br>pollutants | (3)<br>Air<br>pollutants |
|------------------------------------------------------------------------|--------------------------|----------------------------|--------------------------|
| Panel A: Dependent variable: Narro<br>between 75% and 100% of regulate | w compliance (           |                            |                          |
| Audit report × Treatment group                                         | -0.185***                | -0.212***                  | -0.143***                |
| Audit report (= 1)                                                     | $0.034) \ 0.270 = 0.270$ | (0.044) $0.297***$         | (0.046)<br>0.230***      |
| Treatment group (= 1)                                                  | (0.025) $-0.0034$        | (0.034) $-0.013$           | (0.033)<br>0.011         |
| Control mean in backchecks                                             | (0.0176)<br>0.097        | $(0.025) \\ 0.110$         | $0.024) \\ 0.077$        |

Panel B: Dependent variable: Compliance (dummy for pollutant at or below regulatory standard)

| Audit report × Treatment group | -0.234*** | -0.166*** | -0.345*** |
|--------------------------------|-----------|-----------|-----------|
| Addit report × Freatment group | (0.039)   | (0.050)   | (0.056)   |
| Audit report (= 1)             | 0.288***  | 0.273***  | 0.311***  |
|                                | (0.023)   | (0.033)   | (0.032)   |
| Treatment group (= 1)          | 0.058*    | 0.0075    | 0.145***  |
|                                | (0.034)   | (0.0477)  | (0.041)   |
| Control mean in backchecks     | 0.557     | 0.538     | 0.586     |
| Observations                   | 2236      | 1378      | 858       |

PPHA 34600

# Heterogeneity



## Recap

## TL;DR:

- RCTs are great!
- 2 Experiments solve our selection problem
- 3 Be very careful with adding controls

PPHA 34600 Program Evaluation Lecture 03 32 / 32