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From last time: that pesky fundamental problem

Let's go back to our model:

We have i € {1,..., N} units
D; € {0,1} is the treatment indicator for unit i

— Treated units: D; =1
— Untreated units: D; =0

Yi(D;) is the outcome for unit i with treatment status D;

The treatment effect for unit / is just:

7 = Yi(1) = Yi(0)
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From last time: that pesky fundamental problem

Let's go back to our model:

e We have i € {1, ..., N} units
e D; € {0,1} is the treatment indicator for unit /
— Treated units: D; =1
— Untreated units: D; =0
e Yi(D;) is the outcome for unit i with treatment status D;
e The treatment effect for unit / is just:
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Okay, we can't see 7;. What can we see?

Social science generally agrees that estimating 7; is impossible.

— Should we give up and go home now?

Obviously not!
(Sorry?)
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Okay, we can't see 7;. What can we see?

Social science generally agrees that estimating 7; is impossible.

— Should we give up and go home now?

Obviously not!
(Sorry?)

We can still make progress on functions of 7;

e Which ones depend on what questions we want to answer!
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We can imagine several different “treatment parameters”

Our bread and butter is the Average Treatment Effect (ATE):

PATE — Elr] = E[Yi(1) - Yi(0)] = E[Y;(1)] - E[Y;(0)]

The ATE tells us the average impact of treatment across a [sample]...

... but this might not be the only object of interest
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Interlude: The naive estimator vs the ATE
Note that the Average Treatment Effect (ATE)...
TTE = E[r] = E[Yi(1) - Yi(0)] = E[Yi(1)] - E[Yi(0)]

And the naive estimator...

are not the same!

ATE: potential outcomes
Naive estimator: observed outcomes
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We can imagine several different “treatment parameters”
We can also think of treatment effects for particular groups.

Heterogeneous treatment effects:

TX = E[T,"X,‘ = X]
As an example, consider:
rFemale — Elr;|Gender; = female] = E[Y;(1) — Y;(0)|Gender; = female]
= E[Y;(1)|Gender; = female] — E[Y;(0)|Gender; = female]

Nothing stops this from being extremely general...
... but we still face that pesky fundamental problem
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A natural extension of heterogeneous treatment effects

We can also consider heterogeneity by treatment status.

Average treatment effect on the treated (ATT)

e The impact of treatment on treated units:
AT = E[n|D; = 1] = E[Y;(1) - Yi(0)|D; = 1]
= E[Yi(1)|D; = 1] — E[Y;(0)| D; = 1]
e AKA the ATET, TOT, or TT

Why might this differ from the ATE?
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A natural extension of heterogeneous treatment effects

We can also consider heterogeneity by treatment status.

Average treatment effect on the treated (ATT)

e The impact of treatment on treated units:

AT = E[r|D; = 1] = E[Y;(1) — Y;(0)|D; = 1]
= E[Yi(1)|D; = 1] — E[Y;(0)|D; = 1]

o AKA the ATET, TOT, or TT
Why might this differ from the ATE?
— That pesky selection thing returns

Note that we still don't observe E[Y;(0)|D; = 1]!
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A natural extension of heterogeneous treatment effects

We can also consider heterogeneity by treatment status.

Average treatment effect on the untreated (ATN)

e The impact of treatment on untreated units:
ATV — E[5D; = 0] = E[Yi(1) = Yi(0)/D; = 0]
= E[Yi(1)|D; = 0] — E[Yi(0)| D; = 0]
e AKA the ATEN, TONT, or TNT

Why might this differ from the ATE?
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A natural extension of heterogeneous treatment effects

We can also consider heterogeneity by treatment status.

Average treatment effect on the untreated (ATN)

e The impact of treatment on untreated units:

AN — E[r;|D; = 0] = E[Y;(1) — Y;(0)|D; = 0]
= E[Yi(1)|D; = 0] — E[Y;(0)|D; = 0]

e AKA the ATEN, TONT, or TNT
Why might this differ from the ATE?
— That pesky selection thing returns

Note that we still don't observe E[Y;(1)|D; = 0]!
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What can we use these parameters for?

These objects might all be useful - but for different things!

Consider a voluntary tax audit program:

e Suppose the relevant population is all firms, but...
— Not every firm will participate
e Let D; =1 be firms who participate

e Let Y;(1) and Y;(0) be measures of tax payments

e When might we want 7ATT? 7ATN? ATE?

e Do we expect these three treatment parameters to be the same?
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Not everyone need have the same treatment effect

We can define...

Homogenous treatment effects:

e Treatment effects that are the same for everyone
e Note that this includes untreated units!

Heterogenous treatment effects:

e Treatment effects that are not the same for everyone

e Note that this includes untreated units!

With homogenous treatment effects:
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What happens when treatment effects differ?

Typically, because of selection:

7_ATE ?é 7_ATT 7& 7_ATN

Units that choose to take up treatment are different

This extends to treatment effects as well

If cleaning your books is cheap for you, are you likely to enroll?

If cleaning your books is expensive for you, are you likely to enroll?

In this case, the ATE is a function of the ATT and ATN:

FATE _ PI‘(D,' _ 1)7_ATT + (]_ — PF(D,' = 1))TATN
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Zooming in on the ATT

We defined this a few minutes ago as:

T = E[Y,(1) - Y(0)|D; = 1]
— E[Yi(1)|D; = 1] - E[Yi(0)|D; = 1]

Good news:

e E[Y;(1)|D; = 1] is easily observable from data, because
E[Y;(1)|D; =1] = Y(1)

Bad news:
e E[Y;(0)|D; = 1] is unobservable

— We never see untreated outcomes for treated units!
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The selection problem in AT T-land

We can do some math to think about selection here:

ATT = E[Y(1)|D; = 1] — E[Y(0)|D; = 1]
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The selection problem in AT T-land

We can do some math to think about selection here:

ATT = E[Y(1)|D; = 1] — E[Y(0)|D; = 1]

= E[Y;(1)|D; = 1] — E[Yi(0)| D; = 1] + E[V;(0)|D; = 0] — E[V;(0)| D; = 0]

just add and subtract this
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The selection problem in AT T-land

We can do some math to think about selection here:

ATT = E[Y(1)|D; = 1] — E[Y(0)|D; = 1]

= E[Y;(1)|D; = 1] — E[Yi(0)| D; = 1] + E[V;(0)|D; = 0] — E[V;(0)| D; = 0]

just add and subtract this

~ Y(Q) —E[Yi(0)[D; =1]+ E[Y;(0)|D; = 0] —  Y(0)
| |
sample mean sample mean
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The selection problem in AT T-land

We can do some math to think about selection here:

ATT = E[Y(1)|D; = 1] — E[Y(0)|D; = 1]

= E[Yi(1)|Di = 1] — E[Yi(0)[ D = 1] + E[Yi(0)|D; = 0] — E[Y;(0)| D; = 0]

just add and subtract this

~ Y1) —E[Yi(0)|D; = 1]+ E[Y;(0)|D; = 0] — @

sample mean sample mean

= Y(1) - Y(0) - E[Yi(0)|D; = 1] + E[Y;(0)| D; = 0]

rearranged
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The selection problem in AT T-land

We can do some math to think about selection here:
ATT = E[Yi(1)|D; = 1] — E[Y;(0)|D; = 1]

= E[Yi(1)|D; = 1] = E[Yi(0)| D; = 1]+ E[Y;(0)|D; = 0] — E[Y;(0)|D; = O]
just add and subtract this

~ Y1) —E[Yi(0)|D; = 1]+ E[Y;(0)|D; = 0] — @

sample mean

sample mean

= Y(1) - Y(0) - E[Yi(0)|D; = 1] + E[Y;(0)| D; = 0]
rearranged

= the ATT is a combination of what we see and selection:

AT % Y(I) - Y(0) - EIYi(0)1; = 1] + EY(0)|D; = 0]

data

selection
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Roy's parable illustrates selection ruining everything

Let's think about education:

e Suppose only 2 types of people: college-educated and
non-college-educated

o Non-attendees: Y;(0) ~ N(65,000;5,0002)
o Attendees: Y;(1) ~ N(60,000;10,0002)

e Assume the correlation in incomes is high: 0.84
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Roy's parable illustrates selection ruining everything

Let's think about education:

e Suppose only 2 types of people: college-educated and
non-college-educated

o Non-attendees: Y;(0) ~ N(65,000;5,0002)
o Attendees: Y;(1) ~ N(60,000;10,0002)

e Assume the correlation in incomes is high: 0.84

Economists like models. Here's a simple one:

e Each person picks her maximum income:

yi = max(yi(0),yi(1))

where these are lowercase because they're now realizations of Y;

e If person i's income is higher with college, she'll go to school

PPHA 34600 Program Evaluation Lecture 02 13 / 42



Visualizing data is often useful

College mean | | Non-college mean

30 40 50 60 70 80 20
Incomes (thousands of dollars)
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We can use simulated data to think about this

Non-attendees | Attendees | Mean
Non-college income 63,985 68,690 65,001
College income 56,599 72,317 59,992
# of obs 78,414 21,586 100,000
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

Let's start with the naive estimator:

™ =9(1|d;=1)-y(0| di =0) = 72,317 — 63,985 = 8,332
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What do our estimators tell us is going on?

Non-attendees | Attendees | Mean
Non-college income 63,985 68,690 65,001
College income 56,599 72,317 59,992
# of obs 78,414 21,586 100,000
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What do our estimators tell us is going on?

We want to know the treatment effect of college.
Let's start with the naive estimator:

™ =9(1|d;=1)-y(0| di =0) = 72,317 — 63,985 = 8,332

This suggests college causes incomes to rise...but it assumes

E[Yi(1)] = E[Yi(1)|D; = 1] and E[Y;(0)] = E[Y;(0)|D; = 0]
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATE?

7ATE — y(1) — y(0) = 59,992 — 65,001 = —5, 009
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What do our estimators tell us is going on?

Non-attendees | Attendees Mean
Non-college income 63,985 68,690 65,001
College income 56,599 72,317 59,992
# of obs 78,414 21,586 100,000
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATE?

7ATE — y(1) — y(0) = 59,992 — 65,001 = —5, 009

This suggests college causes incomes to drop!

This is the impact from forcing everyone to go to college.
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATT: the effect of college on people who go?

AT —y(1|di=1) —y(0 | di = 1) = 72,317 — 68,690 = 3,627
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What do our estimators tell us is going on?

Non-attendees | Attendees | Mean
Non-college income 63,985 68,690 65,001
College income 56,599 72,317 59,992
# of obs 78,414 21,586 100,000
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATT: the effect of college on attendees?
ATT _ — L = 1) — _
T =y(l|di=1)—y(0|d=1)=72,317 — 68,690 = 3,627

College caused incomes to rise for those that went!
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATT: the effect of attendance on non-college-educated?

AN —3(1 | di = 0) — (0 | dj = 0) = 56,599 — 63,985 = —7, 386
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What do our estimators tell us is going on?

Non-attendees | Attendees | Mean
Non-college income 63,985 68,690 65,001
College income 56,599 72,317 59,992
# of obs 78,414 21,586 100,000
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATT: the effect of attendance on non-college-goers?
AN — 51| d; =0) — (0 | d; = 0) = 56,599 — 63,985 = —7,386

College would have caused incomes to drop for those that chose not to
go!
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Looking at the distributions is illuminating

College mean | | Non-college mean

30 40 50 60 70 80 20
Incomes (thousands of dollars)

People chose what was best for them — and messed up our naive estimator.
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These treatment parameters teach us something interesting

Naive estimator: “effect size" of 8,332

e This tells us nothing!

Average treatment effect: effect size of -5,009

e Forcing college on everyone would be a bad idea

Average treatment on the treated: effect size of 3,627

o Attendees benefitted from their schooling

Average treatment on the untreated: effect size of -7,386

e Non-attendees were right not to go
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Using OLS regression to estimate treatment parameters

We begin with an extremely general model:

Yi(1) = g1(Xi, &)
Yi(0) = go(Xi, &)

where X; are observed characteristics and ¢;, an error term, contains
unobserved characteristics.

For tractability, assume the errors are additively separable:

Yi(1) = g1(Xi, ei) = g1(Xi) + e
Yi(0) = go(Xi, €i) = go(Xi) + <o
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Using OLS regression to estimate treatment parameters

To make our lives easier, let's assume linearity:

Yi(1) = B1Xi + €1
Yi(0) = BoXi + eoi

Linearity isn't as restrictive as it seems:

e If the underlying conditional expectation function is linear, this
regression estimates it

e If the underlying conditional expectation function is non-linear,
regression is its best linear approximation

e We can include non-linear terms [e.g. 37 X; + BEX2]
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Using OLS regression to estimate treatment parameters

We'll also assume that Y;(1) and Y;(0) only differ by a constant
treatment effect:

Yi(1) = Yi(0) + 7

This yields:
Yi=pXi+7Di+e¢i

This is starting to look like a nice OLS regression!
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Using OLS regression to estimate treatment parameters

We'll also assume that Y;(1) and Y;(0) only differ by a constant
treatment effect:

Yi(1) = Yi(0) + 7

This yields:
Yi=pXi+7Di+e¢i

This is starting to look like a nice OLS regression!

What assumptions on ¢; do we need to interpret 7 as the causal
effect of treatment (D;) on our outcome (Y;)?
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Modeling selection in regression land

Start by writing observed outcomes as a function of potential outcomes.
(We'll now omit X; for simplicity and only think about Dj)

Since
v — Yi(1) ifD;=1
" lYi(0) ifDi=0
we can write:
Yi = D;Yi(1) + (1 — D;)Y;(0)

Now assume constant treatment effects: 7; = Y;(1) — Y;(0) =7
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Modeling selection in regression land

We can now write:

Yi = D;Yi(1) + (1 — D;)Y;i(0)
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Modeling selection in regression land

We can now write:

Yi = D;Yi(1) + (1 — D;)Y;i(0)

Yi = D;Y;(1) + Yi(0) — D;Y;i(0)
~—_—— —

expand
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Modeling selection in regression land

We can now write:

Yi = D;Yi(1) + (1 — D;)Y;i(0)

Yi = D;Y;(1) + Y;(0) — D;Y;(0)
—_———
expand

Y; = Y;(0) + (Yi(1) — Yi(0))D;

rearrange
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Modeling selection in regression land

We can now write:

Yi = D;Yi(1) + (1 — D;)Y;i(0)

Yi = D;Y;(1) + Y;(0) — D;Y;(0)
—_———
expand

Y; = Y;(0) + (Yi(1) — Yi(0))D;

rearrange

Yi = Yi(0) + (Yi(1) — Yi(0))D; + E[Yi(0)] — E[Y;(0)]

add & subtract
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Modeling selection in regression land

We can now write:

Yi = D;Yi(1) + (1 — D;)Y;i(0)

Yi = D;Y;(1) + Y;(0) — D;Y;(0)
—_———
expand

Y; = Y;(0) + (Yi(1) — Yi(0))D;

rearrange

Y: = Yi(0) + (Yi(1) — Yi(0))D; + E[Y;(0)] — E[Y;(0)]

add & subtract

Y; = E[Y;(0)] + (Yi(1) — Yi(0))Di + Y;(0) — E[Yi(0)]

rearrange
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Modeling selection in regression land

Y; = E[Yi(0)] + (Yi(1) — Yi(0)) D; + Y;i(0) — E[Y;(0)]
\7_/ v >

Yi=f+71Di+¢;
N———
redefine
where
[: mean (expectation) of Y;(0)
7: constant treatment effect, 7, = 7 = Y;(1) — Y;(0)
;2 random component of Y;(0): Y;(0) — E[Y;(0)]

This looks familiar!
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Modeling selection in regression land

Yi=B+71Di+¢;
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Modeling selection in regression land

Yi=B+71Di+¢;

Taking conditional expectations of Y; on D; =1 and D; = 0:
E[Y,|D, = 1] =pB+T7+ E[E,'|D,' = 1]

E[Y;|D; = 0] = B + E[ei|D; = 0]
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Modeling selection in regression land

Yi=B+71Di+¢;

Taking conditional expectations of Y; on D; =1 and D; = 0:
E[Y,’D, = 1] =pB+T7+ E[E,‘|D,’ = 1]

E[Y;|D; = 0] = B + E[ei|D; = 0]

Now, a familiar enemy:

E[Y,|D, = ]_] — E[Y,|D, = O] =T+ E[E,"D,‘ = 1] — E[&,"D,‘ = 0]

225
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Modeling selection in regression land

Yi=B+71Di+¢;

Taking conditional expectations of Y; on D; =1 and D; = O:
E[Y,’D, = 1] =pB+T7+ E[E,'|D,' = 1]

E[Y;|D; = 0] = B + E[ei|D; = 0]

Now, a familiar enemy:

E[Y,|D, = ]_] — E[Y,|D, = O] =T+ E[E,"D,‘ = 1] — E[&,"D,‘ = 0]

225

This is just the selection term, written as a function of regression
errors c;!
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For regression to estimate 7, we need...

E[E,"D,’ = 1] — E[E,’|D,’ = O] =0

In general, we require
EleilDi] =0

(if you include a constant, you can always get E[e;|D;] = u to be okay)
Note that by the Law of Total Expectations,

Ep[E[alb]] = Ea]

therefore:
E[E,"D;] = E[E,’] =0
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What is this assumption, anyway?

E[E,"D;] =0
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What is this assumption, anyway?
E[E,"D,‘] =0

In words:
The expectation of the error term, conditional on treatment, is zero.

In other words:
Once we condition on treatment, there is no additional information in ;.

In different other words:
The errors are uncorrelated with the treatment variable

In more different other words:
There is no selection bias

In even more different other words:
We observe everything that is correlated with treatment and affects Y;

In even fewer different other words:
D; is exogenous
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Selection as omitted variable bias

We can think about selection as a form of omitted variable bias.
Consider the true model:
Yi=a+ 7D+ X+ ¢

where D is treatment (college), and X is learning ability (unobservable!)
We can't see X, so we instead run:

Yi=a+71Di+v
where v = 8X; + ¢;.

What happens now? Recall that:

. Cov(Y;, D))
T ="
Var(D,-)
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Selection as omitted variable bias

. Cov(Y;, Dj)
T Var(D;)
Cov(a+ 7D; + BX; + €, D;)
- Var(D;)
plug in for Y;
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Selection as omitted variable bias

Cov(Y;, D;)
Var(D;)
Cov(a+ 7D; + BX; + €, D;)
- Var(D;)
plug in for Y;
Cov(D;, o) + T7Cov(D;j, D;) + s Cov(D;, X;) + Cov(D;,¢)
- Var(D))

laws of E[]

>
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Selection as omitted variable bias

Cov(Y;, D;)
Var(D;)
Cov(a+ 7D; + BX; + €, D;)
- Var(D;)
plug in for Y;
Cov(D;, o) + T7Cov(D;j, D;) + s Cov(D;, X;) + Cov(D;,¢)
- Var(D))
laws of E]
0+ TVQI’(D,’) =+ ﬁCOV(D;, X,') +0
- Var(D;)

definitions

>
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Selection as omitted variable bias

Cov(Y;, D)
Var(D)
_ Cov(a+7D; + BX; + €, D;)
Var(D;)
plug in for Y;
_ Cov(Dj,a) + 7Cov(D;, D;) + 3 Cov(D;j, X;) + Cov(D;,¢)
Var(D,-)
laws of E]
. 0+ TVQI’(D,’) =+ ﬁCOV(D;, X,') +0
Var(D;)
definitions
Cov D,', X,'
=THA Va(r(D,-) :

simplify
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Selection as omitted variable bias

In other words:
COV(D,', X;)

F=T+p Var(D;)

2R3
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Selection as omitted variable bias

In other words:

. Cov(D;, X;)
T=THD Var(D;)
222
We wanted to have
T=r7

But because we didn’t observe X;, we are left with ugliness!

To put this back in selection terms, recall that X; is learning ability: the
thing that determines whether college will be good for you.

Once again: selection messes everything up!
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Recap

TL;DR:

@ There are many parameters we might want to estimate
® Selection bias is a big problem for estimation

© We can use regression to estimate these parameters
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