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From last time: that pesky fundamental problem

Let’s go back to our model:

• We have i ∈ {1, ...,N} units

• Di ∈ {0, 1} is the treatment indicator for unit i

→ Treated units: Di = 1

→ Untreated units: Di = 0

• Yi (Di ) is the outcome for unit i with treatment status Di

• The treatment effect for unit i is just:

τi = Yi (1)− Yi (0)

... but we can never observe both Yi (1) and Yi (0) simultaneously!
AAA
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Okay, we can’t see τi . What can we see?

Social science generally agrees that estimating τi is impossible.

→ Should we give up and go home now?

Obviously not!
(Sorry?)

We can still make progress on functions of τi

• Which ones depend on what questions we want to answer!
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We can imagine several different “treatment parameters”

Our bread and butter is the Average Treatment Effect (ATE):

τATE = E [τi ] = E [Yi (1)− Yi (0)] = E [Yi (1)]− E [Yi (0)]

The ATE tells us the average impact of treatment across a [sample]...

... but this might not be the only object of interest

PPHA 34600 Program Evaluation Lecture 02 3 / 42



Interlude: The naive estimator vs the ATE

Note that the Average Treatment Effect (ATE)...

τATE = E [τi ] = E [Yi (1)− Yi (0)] = E [Yi (1)]− E [Yi (0)]

And the naive estimator...

τN = Y (1)− Y (0)

are not the same!

ATE: potential outcomes
Naive estimator: observed outcomes
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We can imagine several different “treatment parameters”

We can also think of treatment effects for particular groups.

Heterogeneous treatment effects:

τX = E [τi |Xi = x ]

As an example, consider:

τFemale = E [τi |Genderi = female] = E [Yi (1)− Yi (0)|Genderi = female]

= E [Yi (1)|Genderi = female]− E [Yi (0)|Genderi = female]

Nothing stops this from being extremely general...
... but we still face that pesky fundamental problem
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A natural extension of heterogeneous treatment effects
We can also consider heterogeneity by treatment status.

Average treatment effect on the treated (ATT)

• The impact of treatment on treated units:

τATT = E [τi |Di = 1] = E [Yi (1)− Yi (0)|Di = 1]

= E [Yi (1)|Di = 1]− E [Yi (0)|Di = 1]

• AKA the ATET, TOT, or TT

Why might this differ from the ATE?

→ That pesky selection thing returns

Note that we still don’t observe E [Yi (0)|Di = 1]!
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A natural extension of heterogeneous treatment effects
We can also consider heterogeneity by treatment status.
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What can we use these parameters for?

These objects might all be useful - but for different things!

Consider a voluntary tax audit program:

• Suppose the relevant population is all firms, but...

→ Not every firm will participate

• Let Di = 1 be firms who participate

• Let Yi (1) and Yi (0) be measures of tax payments

• When might we want τATT ? τATN? τATE?

• Do we expect these three treatment parameters to be the same?
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Not everyone need have the same treatment effect

We can define...

Homogenous treatment effects:

• Treatment effects that are the same for everyone

• Note that this includes untreated units!

Heterogenous treatment effects:

• Treatment effects that are not the same for everyone

• Note that this includes untreated units!

With homogenous treatment effects:

τATE = τATT = τATN
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What happens when treatment effects differ?

Typically, because of selection:

τATE 6= τATT 6= τATN

• Units that choose to take up treatment are different

• This extends to treatment effects as well

• If cleaning your books is cheap for you, are you likely to enroll?

• If cleaning your books is expensive for you, are you likely to enroll?

In this case, the ATE is a function of the ATT and ATN:

τATE = Pr(Di = 1)τATT + (1− Pr(Di = 1))τATN
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Zooming in on the ATT

We defined this a few minutes ago as:

τATT = E [Yi (1)− Yi (0)|Di = 1]

= E [Yi (1)|Di = 1]− E [Yi (0)|Di = 1]

Good news:

• E [Yi (1)|Di = 1] is easily observable from data, because
E [Yi (1)|Di = 1] ≈ Y (1)

Bad news:

• E [Yi (0)|Di = 1] is unobservable

→ We never see untreated outcomes for treated units!
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The selection problem in ATT-land

We can do some math to think about selection here:

τATT = E [Yi (1)|Di = 1]− E [Yi (0)|Di = 1]

= E [Yi (1)|Di = 1]−E [Yi (0)|Di = 1] +E [Yi (0)|Di = 0]− E [Yi (0)|Di = 0]︸ ︷︷ ︸
just add and subtract this

≈ Y (1)︸ ︷︷ ︸
sample mean

−E [Yi (0)|Di = 1] + E [Yi (0)|Di = 0]− Y (0)︸ ︷︷ ︸
sample mean

= Y (1)− Y (0)− E [Yi (0)|Di = 1] + E [Yi (0)|Di = 0]︸ ︷︷ ︸
rearranged

⇒ the ATT is a combination of what we see and selection:

τATT ≈ Y (1)− Y (0)︸ ︷︷ ︸
data

−E [Yi (0)|Di = 1] + E [Yi (0)|Di = 0]︸ ︷︷ ︸
selection
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Roy’s parable illustrates selection ruining everything

Let’s think about education:

• Suppose only 2 types of people: college-educated and
non-college-educated

• Non-attendees: Yi (0) ∼ N(65, 000; 5, 0002)

• Attendees: Yi (1) ∼ N(60, 000; 10, 0002)

• Assume the correlation in incomes is high: 0.84

Economists like models. Here’s a simple one:

• Each person picks her maximum income:

yi = max(yi (0), yi (1))

where these are lowercase because they’re now realizations of Yi

• If person i ’s income is higher with college, she’ll go to school
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Visualizing data is often useful
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We can use simulated data to think about this

Non-attendees Attendees Mean

Non-college income 63,985 68,690 65,001

College income 56,599 72,317 59,992

# of obs 78,414 21,586 100,000
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

Let’s start with the naive estimator:

τN = y(1 | di = 1)− y(0 | di = 0) = 72, 317− 63, 985 = 8, 332

This suggests college causes incomes to rise...but it assumes
E [Yi (1)] = E [Yi (1)|Di = 1] and E [Yi (0)] = E [Yi (0)|Di = 0]
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATE?

τATE = y(1)− y(0) = 59, 992− 65, 001 = −5, 009

This suggests college causes incomes to drop!

This is the impact from forcing everyone to go to college.
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATT: the effect of college on people who go?

τATT = y(1 | di = 1)− y(0 | di = 1) = 72, 317− 68, 690 = 3, 627

College caused incomes to rise for those that went!
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATT: the effect of college on attendees?

τATT = y(1 | di = 1)− y(0 | di = 1) = 72, 317− 68, 690 = 3, 627

College caused incomes to rise for those that went!
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATT: the effect of attendance on non-college-educated?

τATN = y(1 | di = 0)− y(0 | di = 0) = 56, 599− 63, 985 = −7, 386

College would have caused incomes to drop for those that chose not to
attend!
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What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATT: the effect of attendance on non-college-goers?

τATN = y(1 | di = 0)− y(0 | di = 0) = 56, 599− 63, 985 = −7, 386

College would have caused incomes to drop for those that chose not to
go!
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Looking at the distributions is illuminating

People chose what was best for them – and messed up our naive estimator.
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These treatment parameters teach us something interesting

Naive estimator: “effect size” of 8,332

• This tells us nothing!

Average treatment effect: effect size of -5,009

• Forcing college on everyone would be a bad idea

Average treatment on the treated: effect size of 3,627

• Attendees benefitted from their schooling

Average treatment on the untreated: effect size of -7,386

• Non-attendees were right not to go
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Using OLS regression to estimate treatment parameters

We begin with an extremely general model:

Yi (1) = g1(Xi , εi )

Yi (0) = g0(Xi , εi )

where Xi are observed characteristics and εi , an error term, contains
unobserved characteristics.

For tractability, assume the errors are additively separable:

Yi (1) = g1(Xi , εi ) = g1(Xi ) + ε1i

Yi (0) = g0(Xi , εi ) = g0(Xi ) + ε0i
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Using OLS regression to estimate treatment parameters

To make our lives easier, let’s assume linearity:

Yi (1) = β1Xi + ε1i

Yi (0) = β0Xi + ε0i

Linearity isn’t as restrictive as it seems:

• If the underlying conditional expectation function is linear, this
regression estimates it

• If the underlying conditional expectation function is non-linear,
regression is its best linear approximation

• We can include non-linear terms [e.g. βA1 Xi + βB1 X 2
i ]
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Using OLS regression to estimate treatment parameters

We’ll also assume that Yi (1) and Yi (0) only differ by a constant
treatment effect:

Yi (1) = Yi (0) + τ

This yields:
Yi = βXi + τDi + εi

This is starting to look like a nice OLS regression!

What assumptions on εi do we need to interpret τ as the causal
effect of treatment (Di) on our outcome (Yi)?
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Modeling selection in regression land

Start by writing observed outcomes as a function of potential outcomes.
(We’ll now omit Xi for simplicity and only think about Di )

Since

Yi =

{
Yi (1) if Di = 1

Yi (0) if Di = 0

we can write:
Yi = DiYi (1) + (1− Di )Yi (0)

Now assume constant treatment effects: τi = Yi (1)− Yi (0) = τ
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Modeling selection in regression land

We can now write:

Yi = DiYi (1) + (1− Di )Yi (0)

Yi = DiYi (1) + Yi (0)− DiYi (0)︸ ︷︷ ︸
expand

Yi = Yi (0) + (Yi (1)− Yi (0))Di︸ ︷︷ ︸
rearrange

Yi = Yi (0) + (Yi (1)− Yi (0))Di + E [Yi (0)]− E [Yi (0)]︸ ︷︷ ︸
add & subtract

Yi = E [Yi (0)] + (Yi (1)− Yi (0))Di + Yi (0)− E [Yi (0)]︸ ︷︷ ︸
rearrange
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Modeling selection in regression land

...

Yi = E [Yi (0)]︸ ︷︷ ︸
β

+ (Yi (1)− Yi (0))︸ ︷︷ ︸
τ

Di + Yi (0)− E [Yi (0)]︸ ︷︷ ︸
εi

Yi = β + τDi + εi︸ ︷︷ ︸
redefine

where

β: mean (expectation) of Yi (0)

τ : constant treatment effect, τi = τ = Yi (1)− Yi (0)

εi : random component of Yi (0): Yi (0)− E [Yi (0)]

This looks familiar!
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Modeling selection in regression land

Yi = β + τDi + εi

Taking conditional expectations of Yi on Di = 1 and Di = 0:

E [Yi |Di = 1] = β + τ + E [εi |Di = 1]

E [Yi |Di = 0] = β + E [εi |Di = 0]

Now, a familiar enemy:

E [Yi |Di = 1]− E [Yi |Di = 0] = τ + E [εi |Di = 1]− E [εi |Di = 0]︸ ︷︷ ︸
AAA

This is just the selection term, written as a function of regression
errors εi!
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For regression to estimate τ , we need...

E [εi |Di = 1]− E [εi |Di = 0] = 0

In general, we require
E [εi |Di ] = 0

(if you include a constant, you can always get E [εi |Di ] = µ to be okay)

Note that by the Law of Total Expectations,

Eb[E [a|b]] = E [a]

therefore:
E [εi |Di ] = E [εi ] = 0
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What is this assumption, anyway?

E [εi |Di ] = 0

In words:
The expectation of the error term, conditional on treatment, is zero.

In other words:
Once we condition on treatment, there is no additional information in εi .

In different other words:
The errors are uncorrelated with the treatment variable

In more different other words:
There is no selection bias

In even more different other words:
We observe everything that is correlated with treatment and affects Yi

In even fewer different other words:
Di is exogenous
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Selection as omitted variable bias

We can think about selection as a form of omitted variable bias.

Consider the true model:

Yi = α + τDi + βXi + ε

where D is treatment (college), and X is learning ability (unobservable!)
We can’t see X , so we instead run:

Yi = α + τDi + ν

where ν = βXi + εi .

What happens now? Recall that:

τ̂ =
Cov(Yi ,Di )

Var(Di )
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Selection as omitted variable bias

τ̂ =
Cov(Yi ,Di )

Var(Di )

=
Cov(α + τDi + βXi + εi ,Di )

Var(Di )︸ ︷︷ ︸
plug in for Yi

=
Cov(Di , α) + τCov(Di ,Di ) + βCov(Di ,Xi ) + Cov(Di , ε)

Var(Di )︸ ︷︷ ︸
laws of E []

=
0 + τVar(Di ) + βCov(Di ,Xi ) + 0

Var(Di )︸ ︷︷ ︸
definitions

= τ + β
Cov(Di ,Xi )

Var(Di )︸ ︷︷ ︸
simplify
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Selection as omitted variable bias

In other words:

τ̂ = τ + β
Cov(Di ,Xi )

Var(Di )︸ ︷︷ ︸
AAA

We wanted to have
τ̂ = τ

But because we didn’t observe Xi , we are left with ugliness!

To put this back in selection terms, recall that Xi is learning ability: the
thing that determines whether college will be good for you.

Once again: selection messes everything up!
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Recap

TL;DR:

1 There are many parameters we might want to estimate

2 Selection bias is a big problem for estimation

3 We can use regression to estimate these parameters
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