Lecture 02: Paramaters of interest and regression

PPHA 34600

Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

From last time: that pesky fundamental problem

Let's go back to our model:

- We have $i \in \{1, ..., N\}$ units
- $D_i \in \{0,1\}$ is the treatment indicator for unit i
 - \rightarrow Treated units: $D_i = 1$
 - \rightarrow Untreated units: $D_i = 0$
- $Y_i(D_i)$ is the outcome for unit i with treatment status D_i
- The **treatment effect** for unit *i* is just:

$$\tau_i = Y_i(1) - Y_i(0)$$

From last time: that pesky fundamental problem

Let's go back to our model:

- We have $i \in \{1, ..., N\}$ units
- $D_i \in \{0,1\}$ is the treatment indicator for unit i
 - \rightarrow Treated units: $D_i = 1$
 - \rightarrow Untreated units: $D_i = 0$
- $Y_i(D_i)$ is the outcome for unit i with treatment status D_i
- The **treatment effect** for unit *i* is just:

$$\tau_i = Y_i(1) - Y_i(0)$$

... but we can never observe both $Y_i(1)$ and $Y_i(0)$ simultaneously!

Okay, we can't see τ_i . What *can* we see?

Social science generally agrees that estimating τ_i is impossible.

→ Should we give up and go home now?

Obviously not!

(Sorry?)

Okay, we can't see τ_i . What *can* we see?

Social science generally agrees that estimating τ_i is impossible.

→ Should we give up and go home now?

Obviously not! (Sorry?)

(Sorry!)

We can still make progress on **functions** of τ_i

Which ones depend on what questions we want to answer!

We can imagine several different "treatment parameters"

Our bread and butter is the Average Treatment Effect (ATE):

$$\tau^{ATE} = E[\tau_i] = E[Y_i(1) - Y_i(0)] = E[Y_i(1)] - E[Y_i(0)]$$

The ATE tells us the average impact of treatment across a [sample]...

... but this might not be the only object of interest

Interlude: The naive estimator vs the ATE

Note that the Average Treatment Effect (ATE)...

$$\tau^{ATE} = E[\tau_i] = E[Y_i(1) - Y_i(0)] = E[Y_i(1)] - E[Y_i(0)]$$

And the naive estimator...

$$\tau^N = \overline{Y(1)} - \overline{Y(0)}$$

are not the same!

ATE: potential outcomes

Naive estimator: observed outcomes

We can imagine several different "treatment parameters"

We can also think of treatment effects for particular groups.

Heterogeneous treatment effects:

$$\tau^X = E[\tau_i | X_i = x]$$

As an example, consider:

$$au^{Female} = E[\tau_i | \mathsf{Gender}_i = \mathsf{female}] = E[Y_i(1) - Y_i(0) | \mathsf{Gender}_i = \mathsf{female}]$$

$$= E[Y_i(1) | \mathsf{Gender}_i = \mathsf{female}] - E[Y_i(0) | \mathsf{Gender}_i = \mathsf{female}]$$

Nothing stops this from being extremely general...

... but we still face that pesky fundamental problem

We can also consider heterogeneity by treatment status.

Average treatment effect on the treated (ATT)

• The impact of treatment *on treated units*:

$$\tau^{ATT} = E[\tau_i | D_i = 1] = E[Y_i(1) - Y_i(0) | D_i = 1]$$

= $E[Y_i(1) | D_i = 1] - E[Y_i(0) | D_i = 1]$

AKA the ATET, TOT, or TT

Why might this differ from the ATE?

We can also consider heterogeneity by treatment status.

Average treatment effect on the treated (ATT)

• The impact of treatment on treated units:

$$\tau^{ATT} = E[\tau_i | D_i = 1] = E[Y_i(1) - Y_i(0) | D_i = 1]$$

= $E[Y_i(1) | D_i = 1] - E[Y_i(0) | D_i = 1]$

AKA the ATET, TOT, or TT

Why might this differ from the ATE?

→ That pesky selection thing returns

Note that we still don't observe $E[Y_i(0)|D_i=1]!$

We can also consider heterogeneity by treatment status.

Average treatment effect on the untreated (ATN)

• The impact of treatment on untreated units:

$$\tau^{ATN} = E[\tau_i | D_i = 0] = E[Y_i(1) - Y_i(0) | D_i = 0]$$

= $E[Y_i(1) | D_i = 0] - E[Y_i(0) | D_i = 0]$

AKA the ATEN, TONT, or TNT

Why might this differ from the ATE?

We can also consider heterogeneity by treatment status.

Average treatment effect on the untreated (ATN)

• The impact of treatment on untreated units:

$$\tau^{ATN} = E[\tau_i | D_i = 0] = E[Y_i(1) - Y_i(0) | D_i = 0]$$

= $E[Y_i(1) | D_i = 0] - E[Y_i(0) | D_i = 0]$

AKA the ATEN, TONT, or TNT

Why might this differ from the ATE?

→ That pesky selection thing returns

Note that we still don't observe $E[Y_i(1)|D_i=0]!$

What can we use these parameters for?

These objects might all be useful - but for different things!

Consider a voluntary EPA emissions monitoring program:

- Suppose the relevant population is all firms, but...
 - \rightarrow Not every firm will participate
- Let $D_i = 1$ be firms who participate
- Let $Y_i(1)$ and $Y_i(0)$ be measures of emissions
 - When might we want τ^{ATT} ? τ^{ATN} ? τ^{ATE} ?
 - Do we expect these three treatment parameters to be the same?

Not everyone need have the same treatment effect

We can define...

Homogenous treatment effects:

- Treatment effects that are the same for everyone
- Note that this includes untreated units!

Heterogenous treatment effects:

- Treatment effects that are **not** the same for everyone
- Note that this includes untreated units!

With homogenous treatment effects:

$$\tau^{ATE} = \tau^{ATT} = \tau^{ATN}$$

What happens when treatment effects differ?

Typically, because of **selection**:

$$au^{ATE}
eq au^{ATT}
eq au^{ATN}$$

- Units that choose to take up treatment are different
- This extends to treatment effects as well
- If reducing your emissions is cheap for you, are you likely to enroll?
- If reducing your emissions is expensive for you, are you likely to enroll?

In this case, the ATE is a **function** of the ATT and ATN:

$$au^{ATE} = Pr(D_i = 1) au^{ATT} + (1 - Pr(D_i = 1)) au^{ATN}$$

Zooming in on the ATT

We defined this a few minutes ago as:

$$\tau^{ATT} = E[Y_i(1) - Y_i(0)|D_i = 1]$$

= $E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1]$

Good news:

• $E[Y_i(1)|D_i=1]$ is easily observable from data, because $E[Y_i(1)|D_i=1] \approx \overline{Y(1)}$

Bad news:

- $E[Y_i(0)|D_i=1]$ is unobservable
- → We never see untreated outcomes for treated units!

We can do some math to think about selection here:

$$\tau^{ATT} = E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1]$$

We can do some math to think about selection here:

$$\tau^{ATT} = E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1]$$

$$= E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1] + \underbrace{E[Y_i(0)|D_i = 0] - E[Y_i(0)|D_i = 0]}_{\text{just add and subtract this}}$$

PPHA 34600 Program Evaluation Lecture 02 12 / 42

We can do some math to think about selection here:

$$\tau^{ATT} = E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1]$$

$$= E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1] + \underbrace{E[Y_i(0)|D_i = 0] - E[Y_i(0)|D_i = 0]}_{}$$

$$\approx \underbrace{\overline{Y(1)}}_{\text{sample mean}} - E[Y_i(0)|D_i = 1] + E[Y_i(0)|D_i = 0] - \underbrace{\overline{Y(0)}}_{\text{sample mean}}$$

PPHA 34600

iust add and subtract this

We can do some math to think about selection here:

$$\tau^{ATT} = E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1]$$

$$= E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1] + \underbrace{E[Y_i(0)|D_i = 0] - E[Y_i(0)|D_i = 0]}_{\text{just add and subtract this}}$$

$$\approx \underbrace{\overline{Y(1)}}_{\text{sample mean}} - E[Y_i(0)|D_i = 1] + E[Y_i(0)|D_i = 0] - \underbrace{\overline{Y(0)}}_{\text{sample mean}}$$

$$= \overline{Y(1)} - \overline{Y(0)} - E[Y_i(0)|D_i = 1] + E[Y_i(0)|D_i = 0]$$

$$= \underbrace{\overline{Y(1)} - \overline{Y(0)} - E[Y_i(0)|D_i = 1] + E[Y_i(0)|D_i = 0]}_{\text{rearranged}}$$

We can do some math to think about selection here:

$$\tau^{ATT} = E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1]$$

$$= E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1] + \underbrace{E[Y_i(0)|D_i = 0] - E[Y_i(0)|D_i = 0]}_{\text{just add and subtract this}}$$

$$pprox \underbrace{\overline{Y(1)}}_{\mathsf{sample mean}} - E[Y_i(0)|D_i = 1] + E[Y_i(0)|D_i = 0] - \underbrace{\overline{Y(0)}}_{\mathsf{sample mean}}$$

$$=\underbrace{Y(1)-Y(0)-E[Y_i(0)|D_i=1]+E[Y_i(0)|D_i=0]}_{}$$

rearranged

 \Rightarrow the ATT is a combination of what we see and selection:

$$au^{ATT} pprox \underbrace{\overline{Y(1)} - \overline{Y(0)}}_{ ext{data}} - \underbrace{E[Y_i(0)|D_i = 1] + E[Y_i(0)|D_i = 0]}_{ ext{selection}}$$

Roy's parable illustrates selection ruining everything

Let's think about education:

- Suppose only 2 types of people: college-educated and non-college-educated
- Non-attendees: $Y_i(0) \sim N(65,000; 5,000^2)$
- Attendees: $Y_i(1) \sim N(60,000;10,000^2)$
- Assume the correlation in incomes is high: 0.84

Roy's parable illustrates selection ruining everything

Let's think about education:

- Suppose only 2 types of people: college-educated and non-college-educated
- Non-attendees: $Y_i(0) \sim N(65,000; 5,000^2)$
- Attendees: $Y_i(1) \sim N(60,000;10,000^2)$
- Assume the correlation in incomes is high: 0.84

Economists like models. Here's a simple one:

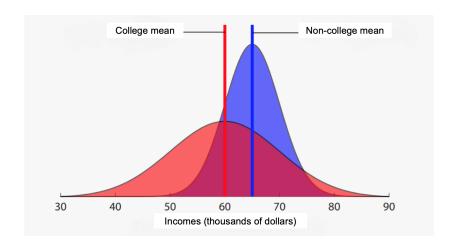
• Each person picks her maximum income:

$$y_i = \max(y_i(0), y_i(1))$$

where these are lowercase because they're now realizations of Y_i

• If person i's income is higher with college, she'll go to school

Visualizing data is often useful



We can use simulated data to think about this

	Non-attendees	Attendees	Mean
Non-college income	63,985	68,690	65,001
College income	56,599	72,317	59,992
# of obs	78,414	21,586	100,000

We want to know the **treatment effect** of college.

Let's start with the naive estimator:

$$\tau^N = \overline{y}(1 \mid d_i = 1) - \overline{y}(0 \mid d_i = 0) = 72,317 - 63,985 = 8,332$$

	Non-attendees	Attendees	Mean
Non-college income	63,985	68,690	65,001
College income	56,599	72,317	59,992
# of obs	78,414	21,586	100,000

We want to know the **treatment effect** of college.

Let's start with the naive estimator:

$$\tau^N = \overline{y}(1 \mid d_i = 1) - \overline{y}(0 \mid d_i = 0) = 72,317 - 63,985 = 8,332$$

This suggests college causes incomes to rise...but it assumes $E[Y_i(1)] = E[Y_i(1)|D_i=1]$ and $E[Y_i(0)] = E[Y_i(0)|D_i=0]$

We want to know the **treatment effect** of college.

What about the ATE?

$$\tau^{ATE} = \overline{y}(1) - \overline{y}(0) = 59,992 - 65,001 = -5,009$$

	Non-attendees	Attendees	Mean
Non-college income	63,985	68,690	65,001
College income	56,599	72,317	59,992
# of obs	78,414	21,586	100,000

We want to know the **treatment effect** of college.

What about the ATE?

$$\tau^{ATE} = \overline{y}(1) - \overline{y}(0) = 59,992 - 65,001 = -5,009$$

This suggests college causes incomes to drop!

This is the impact from forcing everyone to go to college.

We want to know the **treatment effect** of college.

What about the ATT: the effect of college on people who go?

$$\tau^{ATT} = \overline{y}(1 \mid d_i = 1) - \overline{y}(0 \mid d_i = 1) = 72,317 - 68,690 = 3,627$$

	Non-attendees	Attendees	Mean
Non-college income	63,985	68,690	65,001
College income	56,599	72,317	59,992
# of obs	78,414	21,586	100,000

We want to know the treatment effect of college.

What about the ATT: the effect of college on attendees?

$$\tau^{ATT} = \overline{y}(1 \mid d_i = 1) - \overline{y}(0 \mid d_i = 1) = 72,317 - 68,690 = 3,627$$

College caused incomes to rise for those that went!

We want to know the treatment effect of college.

What about the ATT: the effect of attendance on non-college-educated?

$$\tau^{ATN} = \overline{y}(1 \mid d_i = 0) - \overline{y}(0 \mid d_i = 0) = 56,599 - 63,985 = -7,386$$

	Non-attendees	Attendees	Mean
Non-college income	63,985	68,690	65,001
College income	56,599	72,317	59,992
# of obs	78,414	21,586	100,000

What do our estimators tell us is going on?

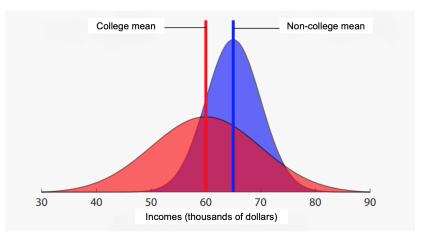
We want to know the **treatment effect** of college.

What about the ATT: the effect of attendance on non-college-goers?

$$\tau^{ATN} = \overline{y}(1 \mid d_i = 0) - \overline{y}(0 \mid d_i = 0) = 56,599 - 63,985 = -7,386$$

College would have caused incomes to drop for those that chose not to go!

Looking at the distributions is illuminating



People chose what was best for them – and messed up our naive estimator.

PPHA 34600 Program Evaluation Lecture 02 28 / 42

These treatment parameters teach us something interesting

Naive estimator: "effect size" of 8,332

• This tells us nothing!

Average treatment effect: effect size of -5,009

Forcing college on everyone would be a bad idea

Average treatment on the treated: effect size of 3,627

• Attendees benefitted from their schooling

Average treatment on the untreated: effect size of -7,386

Non-attendees were right not to go

We begin with an extremely general model:

$$Y_i(1) = g_1(X_i, \varepsilon_i)$$

$$Y_i(0) = g_0(X_i, \varepsilon_i)$$

where X_i are observed characteristics and ε_i , an error term, contains unobserved characteristics.

For tractability, assume the errors are additively separable:

$$Y_i(1) = g_1(X_i, \varepsilon_i) = g_1(X_i) + \varepsilon_{1i}$$

 $Y_i(0) = g_0(X_i, \varepsilon_i) = g_0(X_i) + \varepsilon_{0i}$

To make our lives easier, let's assume linearity:

$$Y_i(1) = \beta_1 X_i + \varepsilon_{1i}$$

$$Y_i(0) = \beta_0 X_i + \varepsilon_{0i}$$

Linearity isn't as restrictive as it seems:

- If the underlying conditional expectation function is linear, this regression estimates it
- If the underlying conditional expectation function is non-linear, regression is its best linear approximation
- We can include non-linear terms [e.g. $\beta_1^A X_i + \beta_1^B X_i^2$]

We'll also assume that $Y_i(1)$ and $Y_i(0)$ only differ by a **constant** treatment effect:

$$Y_i(1) = Y_i(0) + \tau$$

This yields:

$$Y_i = \beta X_i + \tau D_i + \varepsilon_i$$

This is starting to look like a nice OLS regression!

We'll also assume that $Y_i(1)$ and $Y_i(0)$ only differ by a **constant** treatment effect:

$$Y_i(1) = Y_i(0) + \tau$$

This yields:

$$Y_i = \beta X_i + \tau D_i + \varepsilon_i$$

This is starting to look like a nice OLS regression!

What assumptions on ε_i do we need to interpret τ as the causal effect of treatment (D_i) on our outcome (Y_i) ?

Start by writing observed outcomes as a function of potential outcomes. (We'll now omit X_i for simplicity and only think about D_i)

Since

$$Y_i = \begin{cases} Y_i(1) & \text{if } D_i = 1 \\ Y_i(0) & \text{if } D_i = 0 \end{cases}$$

we can write:

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$

Now assume constant treatment effects: $\tau_i = Y_i(1) - Y_i(0) = \tau$

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$

$$Y_i = D_i Y_i(1) + \underbrace{Y_i(0) - D_i Y_i(0)}_{\text{expand}}$$

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$

$$Y_i = D_i Y_i(1) + \underbrace{Y_i(0) - D_i Y_i(0)}_{\text{expand}}$$

$$Y_i = \underbrace{Y_i(0) + (Y_i(1) - Y_i(0))D_i}_{rearrange}$$

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$

$$Y_i = D_i Y_i(1) + \underbrace{Y_i(0) - D_i Y_i(0)}_{\text{expand}}$$

$$Y_i = \underbrace{Y_i(0) + (Y_i(1) - Y_i(0)) D_i}_{\text{rearrange}}$$

$$Y_i = Y_i(0) + (Y_i(1) - Y_i(0)) D_i + \underbrace{E[Y_i(0)] - E[Y_i(0)]}_{\text{add \& subtract}}$$

$$Y_{i} = D_{i}Y_{i}(1) + (1 - D_{i})Y_{i}(0)$$

$$Y_{i} = D_{i}Y_{i}(1) + \underbrace{Y_{i}(0) - D_{i}Y_{i}(0)}_{\text{expand}}$$

$$Y_{i} = \underbrace{Y_{i}(0) + (Y_{i}(1) - Y_{i}(0))D_{i}}_{\text{rearrange}}$$

$$Y_{i} = Y_{i}(0) + (Y_{i}(1) - Y_{i}(0))D_{i} + \underbrace{E[Y_{i}(0)] - E[Y_{i}(0)]}_{\text{add \& subtract}}$$

$$Y_{i} = \underbrace{E[Y_{i}(0)] + (Y_{i}(1) - Y_{i}(0))D_{i} + Y_{i}(0) - E[Y_{i}(0)]}_{\text{rearrange}}$$

$$Y_{i} = \underbrace{E[Y_{i}(0)]}_{\beta} + \underbrace{(Y_{i}(1) - Y_{i}(0))}_{\tau} D_{i} + \underbrace{Y_{i}(0) - E[Y_{i}(0)]}_{\varepsilon_{i}}$$

$$Y_{i} = \underbrace{\beta + \tau D_{i} + \varepsilon_{i}}_{\text{redefine}}$$

where

- β : mean (expectation) of $Y_i(0)$
- τ : constant treatment effect, $\tau_i = \tau = Y_i(1) Y_i(0)$
- ε_i : random component of $Y_i(0)$: $Y_i(0) E[Y_i(0)]$

This looks familiar!

$$Y_i = \beta + \tau D_i + \varepsilon_i$$

$$Y_i = \beta + \tau D_i + \varepsilon_i$$

Taking conditional expectations of Y_i on $D_i = 1$ and $D_i = 0$:

$$E[Y_i|D_i = 1] = \beta + \tau + E[\varepsilon_i|D_i = 1]$$

$$E[Y_i|D_i=0] = \beta + E[\varepsilon_i|D_i=0]$$

$$Y_i = \beta + \tau D_i + \varepsilon_i$$

Taking conditional expectations of Y_i on $D_i = 1$ and $D_i = 0$:

$$E[Y_i|D_i=1] = \beta + \tau + E[\varepsilon_i|D_i=1]$$

$$E[Y_i|D_i=0] = \beta + E[\varepsilon_i|D_i=0]$$

Now, a familiar enemy:

$$E[Y_i|D_i=1] - E[Y_i|D_i=0] = \tau + \underbrace{E[\varepsilon_i|D_i=1] - E[\varepsilon_i|D_i=0]}_{\text{22}}$$

$$Y_i = \beta + \tau D_i + \varepsilon_i$$

Taking conditional expectations of Y_i on $D_i = 1$ and $D_i = 0$:

$$E[Y_i|D_i=1] = \beta + \tau + E[\varepsilon_i|D_i=1]$$

$$E[Y_i|D_i=0] = \beta + E[\varepsilon_i|D_i=0]$$

Now, a familiar enemy:

$$E[Y_i|D_i=1] - E[Y_i|D_i=0] = \tau + \underbrace{E[\varepsilon_i|D_i=1] - E[\varepsilon_i|D_i=0]}_{\text{2.2.}}$$

This is just the selection term, written as a function of regression errors $\varepsilon_i!$

For regression to estimate τ , we need...

$$E[\varepsilon_i|D_i=1]-E[\varepsilon_i|D_i=0]=0$$

In general, we require

$$E[\varepsilon_i|D_i]=0$$

(if you include a constant, you can always get $E[\varepsilon_i|D_i] = \mu$ to be okay)

Note that by the Law of Total Expectations,

$$E_b[E[a|b]] = E[a]$$

therefore:

$$E[\varepsilon_i|D_i]=E[\varepsilon_i]=0$$

What is this assumption, anyway?

$$E[\varepsilon_i|D_i]=0$$

What is this assumption, anyway?

$$E[\varepsilon_i|D_i]=0$$

In words:

The expectation of the error term, conditional on treatment, is zero.

In other words:

Once we condition on treatment, there is no additional information in ε_i .

In different other words:

The errors are uncorrelated with the treatment variable

In more different other words:

There is no selection bias

In even more different other words:

We observe everything that is correlated with treatment and affects Y_i

In even fewer different other words:

 D_i is exogenous

We can think about selection as a form of omitted variable bias.

Consider the true model:

$$Y_i = \alpha + \tau D_i + \beta X_i + \varepsilon$$

where D is treatment (college), and X is learning ability (unobservable!) We can't see X, so we instead run:

$$Y_i = \alpha + \tau D_i + \nu$$

where $\nu = \beta X_i + \varepsilon_i$.

What happens now? Recall that:

$$\hat{\tau} = \frac{Cov(Y_i, D_i)}{Var(D_i)}$$

$$\hat{\tau} = \frac{Cov(Y_i, D_i)}{Var(D_i)}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \beta X_i + \varepsilon_i, D_i)}{Var(D_i)}}_{\text{plug in for } Y_i}$$

$$\hat{\tau} = \frac{Cov(Y_i, D_i)}{Var(D_i)}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \beta X_i + \varepsilon_i, D_i)}{Var(D_i)}}_{\text{plug in for } Y_i}$$

$$= \underbrace{\frac{Cov(D_i, \alpha) + \tau Cov(D_i, D_i) + \beta Cov(D_i, X_i) + Cov(D_i, \varepsilon)}{Var(D_i)}}_{\text{laws of } E[]}$$

$$\hat{\tau} = \frac{Cov(Y_i, D_i)}{Var(D_i)}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \beta X_i + \varepsilon_i, D_i)}{Var(D_i)}}_{\text{plug in for } Y_i}$$

$$= \underbrace{\frac{Cov(D_i, \alpha) + \tau Cov(D_i, D_i) + \beta Cov(D_i, X_i) + Cov(D_i, \varepsilon)}{Var(D_i)}}_{\text{laws of } E[]}$$

$$= \underbrace{\frac{0 + \tau Var(D_i) + \beta Cov(D_i, X_i) + 0}{Var(D_i)}}_{\text{definitions}}$$

$$\hat{\tau} = \frac{Cov(Y_i, D_i)}{Var(D_i)}$$

$$= \underbrace{\frac{Cov(\alpha + \tau D_i + \beta X_i + \varepsilon_i, D_i)}{Var(D_i)}}_{\text{plug in for } Y_i}$$

$$= \underbrace{\frac{Cov(D_i, \alpha) + \tau Cov(D_i, D_i) + \beta Cov(D_i, X_i) + Cov(D_i, \varepsilon)}{Var(D_i)}}_{\text{laws of } E[]}$$

$$= \underbrace{\frac{0 + \tau Var(D_i) + \beta Cov(D_i, X_i) + 0}{Var(D_i)}}_{\text{definitions}}$$

$$= \underbrace{\tau + \beta \frac{Cov(D_i, X_i)}{Var(D_i)}}_{\text{simplify}}$$

PPHA 34600

Program Evaluation

In other words:

$$\hat{\tau} = \tau + \underbrace{\beta \frac{Cov(D_i, X_i)}{Var(D_i)}}_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c}$$

In other words:

We wanted to have

$$\hat{\tau} = \tau$$

But because we didn't observe X_i , we are left with ugliness!

To put this back in selection terms, recall that X_i is learning ability: the thing that determines whether college will be good for you.

Once again: selection messes everything up!

Recap

TL;DR:

- 1 There are many parameters we might want to estimate
- Selection bias is a big problem for estimation
- **3** We can use regression to estimate these parameters

PPHA 34600 Program Evaluation Lecture 02 42 / 42