Lecture 02:
 Paramaters of interest and regression

PPHA 34600
Prof. Fiona Burlig

Harris School of Public Policy
University of Chicago

From last time: that pesky fundamental problem

$\underline{\text { Let's go back to our model: }}$

- We have $i \in\{1, \ldots, N\}$ units
- $D_{i} \in\{0,1\}$ is the treatment indicator for unit i
\rightarrow Treated units: $D_{i}=1$
\rightarrow Untreated units: $D_{i}=0$
- $Y_{i}\left(D_{i}\right)$ is the outcome for unit i with treatment status D_{i}
- The treatment effect for unit i is just:

$$
\tau_{i}=Y_{i}(1)-Y_{i}(0)
$$

From last time：that pesky fundamental problem

$\underline{\text { Let＇s go back to our model：}}$
－We have $i \in\{1, \ldots, N\}$ units
－$D_{i} \in\{0,1\}$ is the treatment indicator for unit i
\rightarrow Treated units：$D_{i}=1$
\rightarrow Untreated units：$D_{i}=0$
－$Y_{i}\left(D_{i}\right)$ is the outcome for unit i with treatment status D_{i}
－The treatment effect for unit i is just：

$$
\tau_{i}=Y_{i}(1)-Y_{i}(0)
$$

．．．but we can never observe both $Y_{i}(1)$ and $Y_{i}(0)$ simultaneously！曷易是

Okay, we can't see τ_{i}. What can we see?

Social science generally agrees that estimating τ_{i} is impossible.
\rightarrow Should we give up and go home now?

Obviously not!

(Sorry?)

Okay, we can't see τ_{i}. What can we see?

Social science generally agrees that estimating τ_{i} is impossible.
\rightarrow Should we give up and go home now?

Obviously not!

(Sorry?)
We can still make progress on functions of τ_{i}

- Which ones depend on what questions we want to answer!

We can imagine several different "treatment parameters"

Our bread and butter is the Average Treatment Effect (ATE):

$$
\tau^{A T E}=E\left[\tau_{i}\right]=E\left[Y_{i}(1)-Y_{i}(0)\right]=E\left[Y_{i}(1)\right]-E\left[Y_{i}(0)\right]
$$

The ATE tells us the average impact of treatment across a [sample]...
... but this might not be the only object of interest

Interlude: The naive estimator vs the ATE

Note that the Average Treatment Effect (ATE)...

$$
\tau^{A T E}=E\left[\tau_{i}\right]=E\left[Y_{i}(1)-Y_{i}(0)\right]=E\left[Y_{i}(1)\right]-E\left[Y_{i}(0)\right]
$$

And the naive estimator...

$$
\tau^{N}=\overline{Y(1)}-\overline{Y(0)}
$$

are not the same!

ATE: potential outcomes
Naive estimator: observed outcomes

We can imagine several different "treatment parameters"

We can also think of treatment effects for particular groups.

Heterogeneous treatment effects:

$$
\tau^{X}=E\left[\tau_{i} \mid X_{i}=x\right]
$$

As an example, consider:

$$
\begin{aligned}
\tau^{\text {Female }} & =E\left[\tau_{i} \mid \text { Gender }_{i}=\text { female }\right]=E\left[Y_{i}(1)-Y_{i}(0) \mid \text { Gender }_{i}=\text { female }\right] \\
& =E\left[Y_{i}(1) \mid \text { Gender }_{i}=\text { female }\right]-E\left[Y_{i}(0) \mid \text { Gender }_{i}=\text { female }\right]
\end{aligned}
$$

Nothing stops this from being extremely general...
... but we still face that pesky fundamental problem

A natural extension of heterogeneous treatment effects

We can also consider heterogeneity by treatment status.

Average treatment effect on the treated (ATT)

- The impact of treatment on treated units:

$$
\begin{aligned}
\tau^{A T T} & =E\left[\tau_{i} \mid D_{i}=1\right]=E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}=1\right] \\
& =E\left[Y_{i}(1) \mid D_{i}=1\right]-E\left[Y_{i}(0) \mid D_{i}=1\right]
\end{aligned}
$$

- AKA the ATET, TOT, or TT

Why might this differ from the ATE?

A natural extension of heterogeneous treatment effects

We can also consider heterogeneity by treatment status.

Average treatment effect on the treated (ATT)

- The impact of treatment on treated units:

$$
\begin{aligned}
\tau^{A T T} & =E\left[\tau_{i} \mid D_{i}=1\right]=E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}=1\right] \\
& =E\left[Y_{i}(1) \mid D_{i}=1\right]-E\left[Y_{i}(0) \mid D_{i}=1\right]
\end{aligned}
$$

- AKA the ATET, TOT, or TT

Why might this differ from the ATE?
\rightarrow That pesky selection thing returns
Note that we still don't observe $E\left[Y_{i}(0) \mid D_{i}=1\right]$!

A natural extension of heterogeneous treatment effects

We can also consider heterogeneity by treatment status.

Average treatment effect on the untreated (ATN)

- The impact of treatment on untreated units:

$$
\begin{aligned}
\tau^{A T N} & =E\left[\tau_{i} \mid D_{i}=0\right]=E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}=0\right] \\
& =E\left[Y_{i}(1) \mid D_{i}=0\right]-E\left[Y_{i}(0) \mid D_{i}=0\right]
\end{aligned}
$$

- AKA the ATEN, TONT, or TNT

Why might this differ from the ATE?

A natural extension of heterogeneous treatment effects

We can also consider heterogeneity by treatment status.

Average treatment effect on the untreated (ATN)

- The impact of treatment on untreated units:

$$
\begin{aligned}
\tau^{A T N} & =E\left[\tau_{i} \mid D_{i}=0\right]=E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}=0\right] \\
& =E\left[Y_{i}(1) \mid D_{i}=0\right]-E\left[Y_{i}(0) \mid D_{i}=0\right]
\end{aligned}
$$

- AKA the ATEN, TONT, or TNT

Why might this differ from the ATE?
\rightarrow That pesky selection thing returns
Note that we still don't observe $E\left[Y_{i}(1) \mid D_{i}=0\right]$!

What can we use these parameters for?

These objects might all be useful - but for different things!

Consider a voluntary EPA emissions monitoring program:

- Suppose the relevant population is all firms, but...
\rightarrow Not every firm will participate
- Let $D_{i}=1$ be firms who participate
- Let $Y_{i}(1)$ and $Y_{i}(0)$ be measures of emissions
- When might we want $\tau^{A T T}$? $\tau^{A T N}$? $\tau^{A T E}$?
- Do we expect these three treatment parameters to be the same?

Not everyone need have the same treatment effect

We can define...
Homogenous treatment effects:

- Treatment effects that are the same for everyone
- Note that this includes untreated units!

Heterogenous treatment effects:

- Treatment effects that are not the same for everyone
- Note that this includes untreated units!

With homogenous treatment effects:

$$
\tau^{A T E}=\tau^{A T T}=\tau^{A T N}
$$

What happens when treatment effects differ?

Typically, because of selection:

$$
\tau^{A T E} \neq \tau^{A T T} \neq \tau^{A T N}
$$

- Units that choose to take up treatment are different
- This extends to treatment effects as well
- If reducing your emissions is cheap for you, are you likely to enroll?
- If reducing your emissions is expensive for you, are you likely to enroll?

In this case, the ATE is a function of the ATT and ATN:

$$
\tau^{A T E}=\operatorname{Pr}\left(D_{i}=1\right) \tau^{A T T}+\left(1-\operatorname{Pr}\left(D_{i}=1\right)\right) \tau^{A T N}
$$

Zooming in on the ATT

We defined this a few minutes ago as:

$$
\begin{aligned}
\tau^{A T T} & =E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}=1\right] \\
& =E\left[Y_{i}(1) \mid D_{i}=1\right]-E\left[Y_{i}(0) \mid D_{i}=1\right]
\end{aligned}
$$

Good news:

- $E\left[Y_{i}(1) \mid D_{i}=1\right]$ is easily observable from data, because $E\left[Y_{i}(1) \mid D_{i}=1\right] \approx \overline{Y(1)}$

Bad news:

- $E\left[Y_{i}(0) \mid D_{i}=1\right]$ is unobservable
\rightarrow We never see untreated outcomes for treated units!

The selection problem in ATT-land

We can do some math to think about selection here:

$$
\tau^{A T T}=E\left[Y_{i}(1) \mid D_{i}=1\right]-E\left[Y_{i}(0) \mid D_{i}=1\right]
$$

The selection problem in ATT-land

We can do some math to think about selection here:

$$
\begin{gathered}
\tau^{A T T}=E\left[Y_{i}(1) \mid D_{i}=1\right]-E\left[Y_{i}(0) \mid D_{i}=1\right] \\
=E\left[Y_{i}(1) \mid D_{i}=1\right]-E\left[Y_{i}(0) \mid D_{i}=1\right]+\underbrace{E\left[Y_{i}(0) \mid D_{i}=0\right]-E\left[Y_{i}(0) \mid D_{i}=0\right]}_{\text {just add and subtract this }}
\end{gathered}
$$

The selection problem in ATT-land

We can do some math to think about selection here:

$$
\begin{gathered}
\tau^{A T T}=E\left[Y_{i}(1) \mid D_{i}=1\right]-E\left[Y_{i}(0) \mid D_{i}=1\right] \\
=E\left[Y_{i}(1) \mid D_{i}=1\right]-E\left[Y_{i}(0) \mid D_{i}=1\right]+\underbrace{E\left[Y_{i}(0) \mid D_{i}=0\right]-E\left[Y_{i}(0) \mid D_{i}=0\right]}_{\text {just add and subtract this }} \\
\approx \underbrace{\overline{Y(1)}}_{\text {sample mean }}-E\left[Y_{i}(0) \mid D_{i}=1\right]+E\left[Y_{i}(0) \mid D_{i}=0\right]-\underbrace{Y(0)}_{\text {sample mean }}
\end{gathered}
$$

The selection problem in ATT-land

We can do some math to think about selection here:

$$
\begin{gathered}
\tau^{A T T}=E\left[Y_{i}(1) \mid D_{i}=1\right]-E\left[Y_{i}(0) \mid D_{i}=1\right] \\
=E\left[Y_{i}(1) \mid D_{i}=1\right]-E\left[Y_{i}(0) \mid D_{i}=1\right]+\underbrace{E\left[Y_{i}(0) \mid D_{i}=0\right]-E\left[Y_{i}(0) \mid D_{i}=0\right]}_{\text {just add and subtract this }} \\
\approx \underbrace{\overline{Y(1)}}_{\text {sample mean }}-E\left[Y_{i}(0) \mid D_{i}=1\right]+E\left[Y_{i}(0) \mid D_{i}=0\right]-\underbrace{\overline{Y(0)}}_{\text {sample mean }} \\
=\underbrace{\overline{Y(1)}-\overline{Y(0)}-E\left[Y_{i}(0) \mid D_{i}=1\right]+E\left[Y_{i}(0) \mid D_{i}=0\right]}_{\text {rearranged }}
\end{gathered}
$$

The selection problem in ATT-land

We can do some math to think about selection here:

$$
\begin{gathered}
\tau^{A T T}=E\left[Y_{i}(1) \mid D_{i}=1\right]-E\left[Y_{i}(0) \mid D_{i}=1\right] \\
=E\left[Y_{i}(1) \mid D_{i}=1\right]-E\left[Y_{i}(0) \mid D_{i}=1\right]+\underbrace{E\left[Y_{i}(0) \mid D_{i}=0\right]-E\left[Y_{i}(0) \mid D_{i}=0\right]}_{\text {just add and subtract this }} \\
\approx \underbrace{\overline{Y(1)}}_{\text {sample mean }}-E\left[Y_{i}(0) \mid D_{i}=1\right]+E\left[Y_{i}(0) \mid D_{i}=0\right]-\underbrace{\overline{Y(0)}}_{\text {sample mean }} \\
=\underbrace{\overline{Y(1)}-\overline{Y(0)}-E\left[Y_{i}(0) \mid D_{i}=1\right]+E\left[Y_{i}(0) \mid D_{i}=0\right]}_{\text {rearranged }}
\end{gathered}
$$

\Rightarrow the ATT is a combination of what we see and selection:

$$
\tau^{A T T} \approx \underbrace{\overline{Y(1)}-\overline{Y(0)}}_{\text {data }}-\underbrace{E\left[Y_{i}(0) \mid D_{i}=1\right]+E\left[Y_{i}(0) \mid D_{i}=0\right]}_{\text {selection }}
$$

Roy's parable illustrates selection ruining everything

Let's think about education:

- Suppose only 2 types of people: college-educated and non-college-educated
- Non-attendees: $Y_{i}(0) \sim N\left(65,000 ; 5,000^{2}\right)$
- Attendees: $Y_{i}(1) \sim N\left(60,000 ; 10,000^{2}\right)$
- Assume the correlation in incomes is high: 0.84

Roy's parable illustrates selection ruining everything

Let's think about education:

- Suppose only 2 types of people: college-educated and non-college-educated
- Non-attendees: $Y_{i}(0) \sim N\left(65,000 ; 5,000^{2}\right)$
- Attendees: $Y_{i}(1) \sim N\left(60,000 ; 10,000^{2}\right)$
- Assume the correlation in incomes is high: 0.84

Economists like models. Here's a simple one:

- Each person picks her maximum income:

$$
y_{i}=\max \left(y_{i}(0), y_{i}(1)\right)
$$

where these are lowercase because they're now realizations of Y_{i}

- If person i's income is higher with college, she'll go to school

Visualizing data is often useful

We can use simulated data to think about this

	Non-attendees	Attendees	Mean
Non-college income	$\mathbf{6 3 , 9 8 5}$	68,690	65,001
College income	56,599	$\mathbf{7 2 , 3 1 7}$	59,992
\# of obs	78,414	21,586	100,000

What do our estimators tell us is going on?

We want to know the treatment effect of college.

Let's start with the naive estimator:

$$
\tau^{N}=\bar{y}\left(1 \mid d_{i}=1\right)-\bar{y}\left(0 \mid d_{i}=0\right)=72,317-63,985=\mathbf{8}, \mathbf{3 3 2}
$$

What do our estimators tell us is going on?

	Non-attendees	Attendees	Mean
Non-college income	$\mathbf{6 3 , 9 8 5}$	68,690	65,001
College income	56,599	$\mathbf{7 2 , 3 1 7}$	59,992
\# of obs	78,414	21,586	100,000

What do our estimators tell us is going on?

We want to know the treatment effect of college.

Let's start with the naive estimator:

$$
\tau^{N}=\bar{y}\left(1 \mid d_{i}=1\right)-\bar{y}\left(0 \mid d_{i}=0\right)=72,317-63,985=\mathbf{8}, 332
$$

This suggests college causes incomes to rise...but it assumes

$$
E\left[Y_{i}(1)\right]=E\left[Y_{i}(1) \mid D_{i}=1\right] \text { and } E\left[Y_{i}(0)\right]=E\left[Y_{i}(0) \mid D_{i}=0\right]
$$

What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATE?

$$
\tau^{A T E}=\bar{y}(1)-\bar{y}(0)=59,992-65,001=-\mathbf{5}, 009
$$

What do our estimators tell us is going on?

	Non-attendees	Attendees	Mean
Non-college income	$\mathbf{6 3 , 9 8 5}$	68,690	65,001
College income	56,599	$\mathbf{7 2 , 3 1 7}$	59,992
\# of obs	78,414	21,586	100,000

What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATE?

$$
\tau^{A T E}=\bar{y}(1)-\bar{y}(0)=59,992-65,001=-\mathbf{5}, 009
$$

This suggests college causes incomes to drop!
This is the impact from forcing everyone to go to college.

What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATT: the effect of college on people who go?

$$
\tau^{A T T}=\bar{y}\left(1 \mid d_{i}=1\right)-\bar{y}\left(0 \mid d_{i}=1\right)=72,317-68,690=\mathbf{3}, \mathbf{6 2 7}
$$

What do our estimators tell us is going on?

	Non-attendees	Attendees	Mean
Non-college income	$\mathbf{6 3 , 9 8 5}$	68,690	65,001
College income	56,599	$\mathbf{7 2 , 3 1 7}$	59,992
\# of obs	78,414	21,586	100,000

What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATT: the effect of college on attendees?

$$
\tau^{A T T}=\bar{y}\left(1 \mid d_{i}=1\right)-\bar{y}\left(0 \mid d_{i}=1\right)=72,317-68,690=\mathbf{3}, \mathbf{6 2 7}
$$

College caused incomes to rise for those that went!

What do our estimators tell us is going on?

We want to know the treatment effect of college.
What about the ATT: the effect of attendance on non-college-educated?

$$
\tau^{A T N}=\bar{y}\left(1 \mid d_{i}=0\right)-\bar{y}\left(0 \mid d_{i}=0\right)=56,599-63,985=-\mathbf{7}, 386
$$

What do our estimators tell us is going on?

	Non-attendees	Attendees	Mean
Non-college income	$\mathbf{6 3 , 9 8 5}$	68,690	65,001
College income	56,599	$\mathbf{7 2 , 3 1 7}$	59,992
\# of obs	78,414	21,586	100,000

What do our estimators tell us is going on?

We want to know the treatment effect of college.

What about the ATT: the effect of attendance on non-college-goers?

$$
\tau^{A T N}=\bar{y}\left(1 \mid d_{i}=0\right)-\bar{y}\left(0 \mid d_{i}=0\right)=56,599-63,985=-\mathbf{7}, 386
$$

College would have caused incomes to drop for those that chose not to go!

Looking at the distributions is illuminating

People chose what was best for them - and messed up our naive estimator.

These treatment parameters teach us something interesting

Naive estimator: "effect size" of 8,332

- This tells us nothing!

Average treatment effect: effect size of $-5,009$

- Forcing college on everyone would be a bad idea

Average treatment on the treated: effect size of 3,627

- Attendees benefitted from their schooling

Average treatment on the untreated: effect size of $-7,386$

- Non-attendees were right not to go

Using OLS regression to estimate treatment parameters

We begin with an extremely general model:

$$
\begin{aligned}
& Y_{i}(1)=g_{1}\left(X_{i}, \varepsilon_{i}\right) \\
& Y_{i}(0)=g_{0}\left(X_{i}, \varepsilon_{i}\right)
\end{aligned}
$$

where X_{i} are observed characteristics and ε_{i}, an error term, contains unobserved characteristics.

For tractability, assume the errors are additively separable:

$$
\begin{aligned}
& Y_{i}(1)=g_{1}\left(X_{i}, \varepsilon_{i}\right)=g_{1}\left(X_{i}\right)+\varepsilon_{1 i} \\
& Y_{i}(0)=g_{0}\left(X_{i}, \varepsilon_{i}\right)=g_{0}\left(X_{i}\right)+\varepsilon_{0 i}
\end{aligned}
$$

Using OLS regression to estimate treatment parameters

To make our lives easier, let's assume linearity:

$$
\begin{aligned}
& Y_{i}(1)=\beta_{1} X_{i}+\varepsilon_{1 i} \\
& Y_{i}(0)=\beta_{0} X_{i}+\varepsilon_{0 i}
\end{aligned}
$$

Linearity isn't as restrictive as it seems:

- If the underlying conditional expectation function is linear, this regression estimates it
- If the underlying conditional expectation function is non-linear, regression is its best linear approximation
- We can include non-linear terms [e.g. $\beta_{1}^{A} X_{i}+\beta_{1}^{B} X_{i}^{2}$]

Using OLS regression to estimate treatment parameters

We'll also assume that $Y_{i}(1)$ and $Y_{i}(0)$ only differ by a constant treatment effect:

$$
Y_{i}(1)=Y_{i}(0)+\tau
$$

This yields:

$$
Y_{i}=\beta X_{i}+\tau D_{i}+\varepsilon_{i}
$$

This is starting to look like a nice OLS regression!

Using OLS regression to estimate treatment parameters

We'll also assume that $Y_{i}(1)$ and $Y_{i}(0)$ only differ by a constant treatment effect:

$$
Y_{i}(1)=Y_{i}(0)+\tau
$$

This yields:

$$
Y_{i}=\beta X_{i}+\tau D_{i}+\varepsilon_{i}
$$

This is starting to look like a nice OLS regression!
What assumptions on ε_{i} do we need to interpret τ as the causal effect of treatment (D_{i}) on our outcome (Y_{i})?

Modeling selection in regression land

Start by writing observed outcomes as a function of potential outcomes.
(We'll now omit X_{i} for simplicity and only think about D_{i})
Since

$$
Y_{i}= \begin{cases}Y_{i}(1) & \text { if } D_{i}=1 \\ Y_{i}(0) & \text { if } D_{i}=0\end{cases}
$$

we can write:

$$
Y_{i}=D_{i} Y_{i}(1)+\left(1-D_{i}\right) Y_{i}(0)
$$

Now assume constant treatment effects: $\tau_{i}=Y_{i}(1)-Y_{i}(0)=\tau$

Modeling selection in regression land

We can now write:

$$
Y_{i}=D_{i} Y_{i}(1)+\left(1-D_{i}\right) Y_{i}(0)
$$

Modeling selection in regression land

We can now write:

$$
\begin{gathered}
Y_{i}=D_{i} Y_{i}(1)+\left(1-D_{i}\right) Y_{i}(0) \\
Y_{i}=D_{i} Y_{i}(1)+\underbrace{Y_{i}(0)-D_{i} Y_{i}(0)}_{\text {expand }}
\end{gathered}
$$

Modeling selection in regression land

We can now write:

$$
\begin{aligned}
Y_{i} & =D_{i} Y_{i}(1)+\left(1-D_{i}\right) Y_{i}(0) \\
Y_{i} & =D_{i} Y_{i}(1)+\underbrace{Y_{i}(0)-D_{i} Y_{i}(0)}_{\text {expand }} \\
Y_{i} & =\underbrace{Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i}}_{\text {rearrange }}
\end{aligned}
$$

Modeling selection in regression land

We can now write:

$$
\begin{gathered}
Y_{i}=D_{i} Y_{i}(1)+\left(1-D_{i}\right) Y_{i}(0) \\
Y_{i}=D_{i} Y_{i}(1)+\underbrace{Y_{i}(0)-D_{i} Y_{i}(0)}_{\text {expand }} \\
Y_{i}=\underbrace{Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i}}_{\text {rearrange }} \\
Y_{i}=Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i}+\underbrace{E\left[Y_{i}(0)\right]-E\left[Y_{i}(0)\right]}_{\text {add } \& \text { subtract }}
\end{gathered}
$$

Modeling selection in regression land

We can now write:

$$
\begin{gathered}
Y_{i}=D_{i} Y_{i}(1)+\left(1-D_{i}\right) Y_{i}(0) \\
Y_{i}=D_{i} Y_{i}(1)+\underbrace{Y_{i}(0)-D_{i} Y_{i}(0)}_{\text {expand }} \\
Y_{i}=\underbrace{Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i}}_{\text {rearrange }} \\
Y_{i}=Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i}+\underbrace{E\left[Y_{i}(0)\right]-E\left[Y_{i}(0)\right]}_{\text {add } \& \text { subtract }} \\
Y_{i}=\underbrace{E\left[Y_{i}(0)\right]+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i}+Y_{i}(0)-E\left[Y_{i}(0)\right]}_{\text {rearrange }}
\end{gathered}
$$

Modeling selection in regression land

$$
\begin{gathered}
Y_{i}=\underbrace{E\left[Y_{i}(0)\right]}_{\beta}+\underbrace{\left(Y_{i}(1)-Y_{i}(0)\right)}_{\tau} D_{i}+\underbrace{Y_{i}(0)-E\left[Y_{i}(0)\right]}_{\varepsilon_{i}} \\
Y_{i}=\underbrace{\beta+\tau D_{i}+\varepsilon_{i}}_{\text {redefine }}
\end{gathered}
$$

where
β : mean (expectation) of $Y_{i}(0)$
τ : constant treatment effect, $\tau_{i}=\tau=Y_{i}(1)-Y_{i}(0)$
$\varepsilon_{i}:$ random component of $Y_{i}(0): Y_{i}(0)-E\left[Y_{i}(0)\right]$
This looks familiar!

Modeling selection in regression land

$$
Y_{i}=\beta+\tau D_{i}+\varepsilon_{i}
$$

Modeling selection in regression land

$$
Y_{i}=\beta+\tau D_{i}+\varepsilon_{i}
$$

Taking conditional expectations of Y_{i} on $D_{i}=1$ and $D_{i}=0$:

$$
\begin{gathered}
E\left[Y_{i} \mid D_{i}=1\right]=\beta+\tau+E\left[\varepsilon_{i} \mid D_{i}=1\right] \\
E\left[Y_{i} \mid D_{i}=0\right]=\beta+E\left[\varepsilon_{i} \mid D_{i}=0\right]
\end{gathered}
$$

Modeling selection in regression land

$$
Y_{i}=\beta+\tau D_{i}+\varepsilon_{i}
$$

Taking conditional expectations of Y_{i} on $D_{i}=1$ and $D_{i}=0$:

$$
\begin{gathered}
E\left[Y_{i} \mid D_{i}=1\right]=\beta+\tau+E\left[\varepsilon_{i} \mid D_{i}=1\right] \\
E\left[Y_{i} \mid D_{i}=0\right]=\beta+E\left[\varepsilon_{i} \mid D_{i}=0\right]
\end{gathered}
$$

Now, a familiar enemy:

$$
E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right]=\tau+\underbrace{E\left[\varepsilon_{i} \mid D_{i}=1\right]-E\left[\varepsilon_{i} \mid D_{i}=0\right]}_{\substack{0 \\ 0}}
$$

Modeling selection in regression land

$$
Y_{i}=\beta+\tau D_{i}+\varepsilon_{i}
$$

Taking conditional expectations of Y_{i} on $D_{i}=1$ and $D_{i}=0$:

$$
\begin{gathered}
E\left[Y_{i} \mid D_{i}=1\right]=\beta+\tau+E\left[\varepsilon_{i} \mid D_{i}=1\right] \\
E\left[Y_{i} \mid D_{i}=0\right]=\beta+E\left[\varepsilon_{i} \mid D_{i}=0\right]
\end{gathered}
$$

Now, a familiar enemy:

$$
E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right]=\tau+\underbrace{E\left[\varepsilon_{i} \mid D_{i}=1\right]-E\left[\varepsilon_{i} \mid D_{i}=0\right]}_{\substack{0 \\ 0}}
$$

This is just the selection term, written as a function of regression errors ε_{i} !

For regression to estimate τ, we need...

$$
E\left[\varepsilon_{i} \mid D_{i}=1\right]-E\left[\varepsilon_{i} \mid D_{i}=0\right]=0
$$

In general, we require

$$
E\left[\varepsilon_{i} \mid D_{i}\right]=0
$$

(if you include a constant, you can always get $E\left[\varepsilon_{i} \mid D_{i}\right]=\mu$ to be okay) Note that by the Law of Total Expectations,

$$
E_{b}[E[a \mid b]]=E[a]
$$

therefore:

$$
E\left[\varepsilon_{i} \mid D_{i}\right]=E\left[\varepsilon_{i}\right]=0
$$

What is this assumption, anyway?

$$
E\left[\varepsilon_{i} \mid D_{i}\right]=0
$$

What is this assumption, anyway?

$$
E\left[\varepsilon_{i} \mid D_{i}\right]=0
$$

In words:
The expectation of the error term, conditional on treatment, is zero.
In other words:
Once we condition on treatment, there is no additional information in ε_{i}.
In different other words:
The errors are uncorrelated with the treatment variable
In more different other words:
There is no selection bias
In even more different other words:
We observe everything that is correlated with treatment and affects Y_{i}
In even fewer different other words:
D_{i} is exogenous

Selection as omitted variable bias

We can think about selection as a form of omitted variable bias.
Consider the true model:

$$
Y_{i}=\alpha+\tau D_{i}+\beta X_{i}+\varepsilon
$$

where D is treatment (college), and X is learning ability (unobservable!) We can't see X, so we instead run:

$$
Y_{i}=\alpha+\tau D_{i}+\nu
$$

where $\nu=\beta X_{i}+\varepsilon_{i}$.
What happens now? Recall that:

$$
\hat{\tau}=\frac{\operatorname{Cov}\left(Y_{i}, D_{i}\right)}{\operatorname{Var}\left(D_{i}\right)}
$$

Selection as omitted variable bias

$$
\begin{gathered}
\hat{\tau}=\frac{\operatorname{Cov}\left(Y_{i}, D_{i}\right)}{\operatorname{Var}\left(D_{i}\right)} \\
=\underbrace{\frac{\operatorname{Cov}\left(\alpha+\tau D_{i}+\beta X_{i}+\varepsilon_{i}, D_{i}\right)}{\operatorname{Var}\left(D_{i}\right)}}_{\text {plug in for } Y_{i}}
\end{gathered}
$$

Selection as omitted variable bias

$$
\begin{gathered}
\hat{\tau}=\frac{\operatorname{Cov}\left(Y_{i}, D_{i}\right)}{\operatorname{Var}\left(D_{i}\right)} \\
=\underbrace{\frac{\operatorname{Cov}\left(\alpha+\tau D_{i}+\beta X_{i}+\varepsilon_{i}, D_{i}\right)}{\operatorname{Var}\left(D_{i}\right)}}_{\text {plug in for } Y_{i}} \\
=\underbrace{\operatorname{Cov}\left(D_{i}, \alpha\right)+\tau \operatorname{Cov}\left(D_{i}, D_{i}\right)+\beta \operatorname{Cov}\left(D_{i}, X_{i}\right)+\operatorname{Cov}\left(D_{i}, \varepsilon\right)}_{\text {laws of } E[]}
\end{gathered}
$$

Selection as omitted variable bias

$$
\begin{gathered}
\hat{\tau}=\frac{\operatorname{Cov}\left(Y_{i}, D_{i}\right)}{\operatorname{Var}\left(D_{i}\right)} \\
=\underbrace{\frac{\operatorname{Cov}\left(\alpha+\tau D_{i}+\beta X_{i}+\varepsilon_{i}, D_{i}\right)}{\operatorname{Var}\left(D_{i}\right)}}_{\text {plug in for } Y_{i}} \\
=\underbrace{\operatorname{Cov}\left(D_{i}, \alpha\right)+\tau \operatorname{Cov}\left(D_{i}, D_{i}\right)+\beta \operatorname{Cov}\left(D_{i}, X_{i}\right)+\operatorname{Cov}\left(D_{i}, \varepsilon\right)}_{\text {laws of } E[]} \\
\operatorname{Var}\left(D_{i}\right) \\
\underbrace{0+\tau \operatorname{Var}\left(D_{i}\right)+\beta \operatorname{Cov}\left(D_{i}, X_{i}\right)+0}_{\text {definitions }}
\end{gathered}
$$

Selection as omitted variable bias

$$
\begin{gathered}
\hat{\tau}=\frac{\operatorname{Cov}\left(Y_{i}, D_{i}\right)}{\operatorname{Var}\left(D_{i}\right)} \\
=\underbrace{\frac{\operatorname{Cov}\left(\alpha+\tau D_{i}+\beta X_{i}+\varepsilon_{i}, D_{i}\right)}{\operatorname{Var}\left(D_{i}\right)}}_{\text {plug in for } Y_{i}} \\
=\underbrace{\frac{\operatorname{Cov}\left(D_{i}, \alpha\right)+\tau \operatorname{Cov}\left(D_{i}, D_{i}\right)+\beta \operatorname{Cov}\left(D_{i}, X_{i}\right)+\operatorname{Cov}\left(D_{i}, \varepsilon\right)}{\operatorname{Var}\left(D_{i}\right)}}_{\text {laws of } E[]} \\
=\underbrace{\tau+\tau \operatorname{Var}\left(D_{i}\right)+\beta \operatorname{Cov}\left(D_{i}, X_{i}\right)+0}_{\text {simplify }} \frac{\operatorname{Var}\left(D_{i}\right)}{\operatorname{lefinitions}}
\end{gathered}
$$

Selection as omitted variable bias

In other words:

$$
\hat{\tau}=\tau+\underbrace{\beta \frac{\operatorname{Cov}\left(D_{i}, X_{i}\right)}{\operatorname{Var}\left(D_{i}\right)}}_{Q_{0}}
$$

Selection as omitted variable bias

In other words:

$$
\hat{\tau}=\tau+\underbrace{\beta \frac{\operatorname{Cov}\left(D_{i}, X_{i}\right)}{\operatorname{Var}\left(D_{i}\right)}}_{\text {Q }_{0}^{0}}
$$

We wanted to have

$$
\hat{\tau}=\tau
$$

But because we didn't observe X_{i}, we are left with ugliness!
To put this back in selection terms, recall that X_{i} is learning ability: the thing that determines whether college will be good for you.

Once again: selection messes everything up!

Recap

TL;DR:
(1) There are many parameters we might want to estimate
(2) Selection bias is a big problem for estimation
(3) We can use regression to estimate these parameters

