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A B S T R A C T

How should researchers design panel data experiments? We analytically derive the variance of panel estimators,
informing power calculations in panel data settings. We generalize Frison and Pocock (1992) to fully arbitrary
error structures, thereby extending McKenzie (2012) to allow for non-constant serial correlation. Using Monte
Carlo simulations and real-world panel data, we demonstrate that failing to account for arbitrary serial corre-
lation ex ante yields experiments that are incorrectly powered under proper inference. By contrast, our “serial-
correlation-robust” power calculations achieve correctly powered experiments in both simulated and real data.
We discuss the implications of these results, and introduce a new software package to facilitate proper power
calculations in practice.

1. Introduction

Randomized controlled trials (RCTs) are an increasingly popular
method for applied economics research (Card et al. (2011). When
designing RCTs, researchers typically use ex ante power calculations
to evaluate the trade-off between sample size and statistical precision.
If the sample is too small, the experiment will be unable to distinguish
between true and false null hypotheses; at the same time, overly large
samples waste resources.1 The economics literature on power calcu-
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1 Bloom (1995) provides an early framework for power calculations, while Duflo et al. (2007) and Glennerster and Takavarasha (2013) detail their implementation

in practice. Cohen (1977) and Murphy et al. (2014) are also classic references.
2 Researchers often collect two waves of data, but estimate treatment effects using post-treatment data only, controlling for the baseline level of the outcome

variable (following McKenzie (2012)). Baird et al. (2018) extends the standard cross-sectional setup to randomized saturation designs, capable of measuring spillover
and general equilibrium effects. Athey and Imbens (2017) discusses statistical power using a randomization inference approach.

3 Recent panel RCTs include Bloom et al. (2013); Blattman et al. (2014); Jessoe and Rapson (2014); Bloom et al. (2015); Fowlie et al. (2017); Atkin et al. (2017a,
2017b); McKenzie (2017); and Fowlie et al. (2018).

lations has focused on single-wave experiments, where units are ran-
domized into treatment and control groups, and researchers observe
each unit once.2 In a widely cited paper based on results from Frison
and Pocock (1992), McKenzie (2012) recommends panel data experi-
ments, where multiple observations per unit help to increase statistical
power. This is especially attractive in settings where collecting addi-
tional waves of data for one individual is cheaper than enrolling more
individuals. As a result, panel RCTs have become increasingly common
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in recent years.3
At the same time, panel data pose challenges for statistical inference,

due to non-constant within-unit serial correlation. Bertrand, Duflo, and
Mullainathan (2004) demonstrate that failing to account for this cor-
relation structure can bias standard errors towards zero, raising the
probability of a Type I error. In order to achieve correct false rejec-
tion rates, applied econometricians often implement the cluster-robust
variance estimator (CRVE), or use “clustered standard errors”, which
accommodates arbitrary serial correlation within panel units.4

Besides affecting the false rejection rate, serial correlation can also
impact statistical power. Hence, it is important to properly account for
serial correlation during both ex post analysis and ex ante power cal-
culations.5 However, McKenzie (2012) only allows for constant serial
correlation ex ante (equivalent to assuming i.i.d. errors after removing
unit fixed effects), despite evidence that panel data typically exhibit
more complex serial correlation (Bertrand et al. (2004)). While Frison
and Pocock (1992) propose a framework for incorporating non-constant
serial correlation into ex ante power calculations, they rely on restrictive
assumptions—homogeneous error structures across units and determin-
istic time shocks—which are likely unrealistic in practice. As a result,
there is a gap in the existing literature that may preclude researchers
from designing properly powered experiments using panel data.

In this paper, we derive analytical expressions for the variance of
panel estimators under arbitrary non-i.i.d. error structures, while also
allowing for random time shocks. We use these expressions to (i) for-
malize a power calculation formula for difference-in-differences esti-
mators that is robust to arbitrary serial correlation, and (ii) devise a
method for estimating the required inputs to this formula from real
data.6

We conduct Monte Carlo analyses using both simulated and real
data, and demonstrate that the methods outlined in McKenzie (2012)
yield experiments that are incorrectly powered in the presence of
non-constant serial correlation, even with proper ex post inference.
These methods tend to yield dramatically overpowered experiments
in short panels and dramatically underpowered experiments in long
panels. By allowing for non-constant serial correlation ex ante, our
“serial-correlation-robust” power calculation approach achieves the
desired power in both simulated and real data. Ultimately, we pro-
vide researchers with both the theoretical insights and practical tools
to design properly powered experiments in panel data settings.

We make three main contributions to the economics literature on
experimental design. First, we show that standard power calculation
methods for panel RCTs (discussed in McKenzie (2012)) fail in the pres-
ence of arbitrary serial correlation. Second, we derive a new power
calculation formula for difference-in-differences, allowing for arbitrary
serial correlation, which extends Frison and Pocock (1992) by accom-
modating heterogeneous error structures across units and random time

4 See White (1984), Arellano (1987), and Cameron and Miller (2015) for
more details on the CRVE. Abadie et al. (2017) underscore the need to use
the CRVE in experiments where treatment assignment is correlated within
clusters—as in most panel RCTs, where treated units remain treated throughout
the experiment.

5 If researchers do not adjust their standard errors ex post to account for
within-unit serial correlation in panel data, they will likely over-reject true null
hypotheses. If they adjust their standard errors ex post but do not adjust their
ex ante power calculations to account for within-unit serial correlation, they
introduce a mismatch between ex ante and ex post assumptions that will likely
yield incorrectly powered experiments.

6 Recent experiments published in top economics journals use either the
difference-in-differences estimator or the ANCOVA estimator. We discuss
ANCOVA in Sections 2.2.2 and 3.1, where standard power calculation tech-
niques similarly ignore non-constant serial correlation within panel units. How-
ever, analytically deriving the variance of the ANCOVA estimator necessi-
tates restrictive assumptions on the data generating process, causing analytical
ANCOVA power calculations to perform poorly with real data. For this reason,
we focus on power calculations for difference-in-differences.

shocks. This serial-correlation-robust formula enables researchers to
calibrate panel RCTs to the desired power. Finally, we provide guid-
ance for designing panel RCTs in real experimental settings, and intro-
duce an accompanying STATA package (pcpanel) to facilitate proper
power calculations in practice.

The paper proceeds as follows. Section 2 presents analytical power
calculations for panel data with arbitrary serial correlation, and uses
Monte Carlo simulations to evaluate the performance of these results.
Section 3 extends these simulation results to real experimental data.
Section 4 discusses practical issues related to power calculations, and
introduces our accompanying software package. Section 5 concludes.

2. Power calculations for panel data

Power calculations provide an ex ante estimate of the smallest effect
size that an experiment, with a given sample size and experimental
design will be able to statistically detect. Most power calculations take
the following form:

MDE =
(

td1−𝜅 + td
𝛼∕2

)√
Var

(
𝜏 ∣ X

)
(1)

where Var(𝜏 ∣ X) is the exact finite sample variance of the treatment
effect estimator, conditional on independent variables X; td

𝛼∕2 is the
critical value of a t distribution with d degrees of freedom associated
with the probability of a Type I error, 𝛼, in a two-sided test against a
null hypothesis of 𝜏 = 0; and td1−𝜅 is the critical value associated with
the probability of correctly rejecting a false null, 𝜅.7 These parame-
ters determine the minimum detectable effect (MDE), the smallest value|𝜏| > 0 for which the experiment will (correctly) reject the null 𝜏 = 0
with probability 𝜅 at the significance level 𝛼.

This paper’s core contribution is our “serial-correlation-robust”
(SCR) power calculation formula for designing experiments with panel
data. This section outlines our model and resulting SCR formula for
the difference-in-differences (DD) estimator, which extends Frison and
Pocock (1992) and McKenzie (2012) by incorporating arbitrary (non-
constant) serial correlation. Using simulations, we demonstrate the
importance of accounting for this correlation ex ante in order to achieve
the desired statistical power ex post. We also consider three sensitivities:
short panels, which are traditionally of interest in development eco-
nomics; alternative treatment effect estimators; and alternative assump-
tions on the data generating process (DGP).

2.1. Serial-correlation-robust power calculations

We begin with a model in which there are J units, P proportion of
which are randomized into treatment. The researcher collects outcome
data Yit for each unit i, across m pre-treatment time periods and r post-
treatment time periods. For treated units, Dit = 0 in pre-treatment peri-
ods and Dit = 1 in post-treatment periods; for control units, Dit = 0
in all periods.8

Assumption 1. (Data generating process).
The data are generated according to the following model:

Yit = 𝛽 + 𝜏Dit + 𝜐i + 𝛿t + 𝜔it

where 𝜐i is a unit-specific disturbance distributed i.i.d.  (0, 𝜎2
𝜐 ); 𝛿t is a

time-specific disturbance distributed i.i.d.  (0, 𝜎2
𝛿
); 𝜔it is an idiosyncratic

7 For one-sided tests, td
𝛼∕2 can be replaced with td

𝛼 . 1− 𝜅 gives the probability
of a false rejection, or a Type II error. The degrees of freedom, d, will depend
on the dimensions of X and the treatment effect estimator in question.

8 Put differently, we assume that there is a control group of units that is never
treated in the sample period, and a treatment group of units for which treat-
ment turns on in a particular time period (and persists through all subsequent
periods). This is a standard design for panel RCTs in economics.

2



F. Burlig et al. Journal of Development Economics 144 (2020) 102458

error term distributed (not necessarily i.i.d.)  (0, 𝜎2
𝜔); and 𝜏 is the treat-

ment effect, which is assumed to be homogeneous across all units and all
time periods.9

Assumption 2. (Strict exogeneity).
E[𝜔it ∣ X] = 0, where X is a full rank matrix of regressors, including a

constant, the treatment indicator D, J − 1 unit dummies, and (m + r) − 1
time dummies. This follows from random assignment of Dit .

Assumption 3. (Balanced panel).
The number of pre-treatment observations, m, and post-treatment obser-

vations, r, is the same for each unit, and all units are observed in every time
period.

Assumption 4. (Independence across units).
E[𝜔it𝜔js ∣ X] = 0,∀i ≠ j,∀t, s.

Assumption 5. (Symmetric covariance structures). Define:

𝜓B ≡
2

Jm(m − 1)

J∑
i=1

−1∑
t=−m+1

0∑
s=t+1

Cov (𝜔it , 𝜔is ∣ X)

𝜓A ≡
2

Jr(r − 1)

J∑
i=1

r−1∑
t=1

r∑
s=t+1

Cov (𝜔it , 𝜔is ∣ X)

𝜓X ≡
1

Jmr

J∑
i=1

0∑
t=−m+1

r∑
s=1

Cov (𝜔it , 𝜔is ∣ X)

to be the average pre-treatment, post-treatment, and across-period
covariance between different error terms of the same unit, respectively.
Define 𝜓B

T , 𝜓A
T , and 𝜓X

T analogously, where we consider only the PJ treated
units; also define 𝜓B

C , 𝜓A
C , and 𝜓X

C analogously, where we consider only the
(1 − P)J control units. Using these definitions, assume that 𝜓B = 𝜓B

T = 𝜓B
C ;

𝜓A = 𝜓A
T = 𝜓A

C ; and 𝜓X = 𝜓X
T = 𝜓X

C .10

Under these assumptions, the OLS estimator with unit and time
fixed effects is 𝜏 = (D̈′D̈)−1D̈′Ÿ, with E[𝜏] = 𝜏. Assumptions 1–5 yield
a power calculation formula that is robust to arbitrary serial correla-
tion11:

9 While we assume a homogeneous treatment effect, our derivations also hold
if 𝜏 varies across time periods (as in Frison and Pocock (1992), and McKenzie
(2012)). In addition, this data generating process is quite general and nests
versions with no random unit or time shocks; reducing 𝜎2

𝜐 (𝜎2
𝛿
) to zero is equiv-

alent to removing random unit (time) shocks from the data generating process.
Section 2.2.3 explores data generating processes where 𝜐i and 𝛿t are determin-
istic, rather than random shocks. In Section 3.1 below, we explore the perfor-
mance of our serial-correlation-robust power calculations in a real data setting
where the true data generating process is unknown.

10 These terms come from the derivation of the variance of the DD estimator
(see Appendix A.2.2). Each 𝜓 averages covariances over units with potentially
heterogeneous error structures (𝜔it from the underlying DGP). In addition, the
𝜓 terms depend both on the error structure and on the length of the exper-
iment (m and r). We choose the letters “B” to indicate the Before-treatment
period, and “A” to indicate the After-treatment period. We index the m pre-
treatment periods {−m + 1,…,0}, and the r post-treatment periods {1,…, r}.
In a randomized setting, E

[
𝜓B] = E

[
𝜓B

T

]
= E

[
𝜓B

C

]
, E

[
𝜓A] = E

[
𝜓A

T

]
= E

[
𝜓A

C

]
,

and E
[
𝜓X] = E

[
𝜓X

T
]
= E

[
𝜓X

C
]
, making this a reasonable assumption ex ante.

However, it is possible for treatment to alter the covariance structure of treated
units only.

11 We present the formal derivation of this formula in Appendix A.2.2. Note
that if m = 1 (or r = 1), 𝜓B (or 𝜓A) is not defined and is multiplied by 0 in
Equation (2).

MDE = (tJ1−𝜅 + tJ
𝛼∕2)×√√√√√√√

(
1

P (1 − P) J

)[(m + r
mr

)
𝜎2
𝜔 +

(m − 1
m

)
𝜓B +

( r − 1
r

)
𝜓A − 2𝜓X

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Var(𝜏∣X)

(2)

Throughout the remainder of the paper, we refer to Equation (2) as the
“serial-correlation-robust” (SCR) power calculation formula. Note that
under cross-sectional randomization, this expression for the variance of
𝜏 still holds in expectation, even in the presence of within-period error
correlations across units:

Lemma 1. In a panel difference-in-differences model
with treatment randomly assigned at the unit level,(

1
P(1−P)J

) [(
m+r
mr

)
𝜎2
𝜔 +

(
m−1

m

)
𝜓B +

(
r−1

r

)
𝜓A − 2𝜓X

]
is an unbi-

ased estimator of the expectation of Var(𝜏 ∣ X), even in the presence of
arbitrary within-period cross-sectional correlations. See Appendix A.3 for
a proof, and see Appendix A.2.3 for a more general model that relaxes
Assumptions 4-5.

2.1.1. Accounting for serial correlation
Our SCR power calculation formula generalizes the Frison and

Pocock (1992) (henceforth FP) difference-in-differences formula to
accommodate fully arbitrary correlation structures. Whereas FP assume
that all units share a homogeneous correlation structure, our SCR
formula accommodates arbitrary heterogeneous correlation structures
across units. We also allow for random time shocks across all units,
which are characteristic of most economic datasets.12 As a result, our
SCR formula is able to flexibly accommodate more realistic panel data
structures.

McKenzie (2012) is the most widely cited reference for power calcu-
lations using panel data in economics. McKenzie’s results follow from
FP’s original derivations, yet they impose a more restrictive assumption
on the data generating process: constant serial correlation between any
two time periods, within each cross-sectional unit.13 Using our nota-
tion, McKenzie’s difference-in-differences power calculation formula
becomes14:

MDE =
(

tJ1−𝜅 + tJ
𝛼∕2

)√√√√(
𝜎2
𝜔

P(1 − P)J

)(m + r
mr

)
(3)

This is equivalent to the SCR formula when 𝜓A, 𝜓B, and𝜓X are all equal
to zero—allowing only constant serial correlation of the composite error
term (εit , in McKenzie’s notation), or an i.i.d. idiosyncratic error term
(𝜔it , in our notation). As highlighted by Bertrand et al. (2004, hence-
forth BDM), this assumption is likely unrealistic because most panel

12 If we impose FP’s assumptions, our SCR formula collapses to the FP formula
for the difference-in-differences model with unequal correlations.

13 The preceding paragraph describes the most general FP model, reported on
page 1701. McKenzie draws from the more restrictive FP model, reported on p.
1693.

14 See Appendix A.2.1 for the derivation. This formula is analogous to McKen-
zie’s theoretical formula. McKenzie (2012, p. 215) suggests an alternative
approach for empirical applications with non-constant serial correlation, which
we explore in Appendix C.4 using both simulated and real data. We find that
this approach, while effective in panels with only 1 pre- and 1 post-treatment
period, delivers improperly powered experiments in longer panels. We also find
this approach to be less effective as the degree of autocorrelation increases. In
Appendices D.1 and E, we derive a method to use real pre-existing data to
perform power calculations using the SCR method, which is effective even in
settings where the true DGP is unknown.
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datasets in economics exhibit non-constant serial correlation.15

To further illustrate the difference between the McKenzie and SCR
models, consider two cross-sectional units (indexed {i, j}) and four
time periods (indexed {0,1,2,3}), with the data generating process
described in Assumption 1. The vector of idiosyncratic errors, 𝝎, and
the corresponding variance-covariance matrix, 𝛀, can be represented
as follows16:

𝛚 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜔i0

𝜔i1

𝜔i2

𝜔i3

𝜔j0

𝜔j1

𝜔j2

𝜔j3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝛀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2
i0

𝜎i0,i1 𝜎2
i1

𝜎i0,i2 𝜎i1,i2 𝜎2
i2

𝜎i0,i3 𝜎i1,i3 𝜎i2,i3 𝜎2
i3

𝜎2
j0

𝜎j0,j1 𝜎2
j1

𝜎j0,j2 𝜎j1,j2 𝜎2
j2

𝜎j0,j3 𝜎j1,j3 𝜎j2,j3 𝜎2
j3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Serial correlation within each unit is represented by the (potentially
non-zero) covariance terms 𝜎it,is and 𝜎jt,js, for all t ≠ s. In contrast,
McKenzie’s model allows only for constant serial correlation—that is,
𝜐i ≠ 0 and 𝜔it i.i.d., in our notation. The assumption of i.i.d. idiosyn-
cratic errors would force all off-diagonal covariance elements in 𝛀 to
equal zero, thereby precluding the types of non-constant serial correla-
tion that BDM highlight (e.g., autoregressive processes).

The magnitudes of these off-diagonal covariance terms directly
affect the variance of the DD estimator. The three 𝜓 terms defined
above, along with the error variance and experimental design param-
eters, are sufficient to fully characterize the true variance of the treat-
ment effect estimator in this model. To fix ideas, using the four-period
model above and supposing treatment is administered beginning at
t = 2, these covariance parameters are:

𝜓B =
𝜎i0,i1 + 𝜎j0,j1

2

𝜓A =
𝜎i2,i3 + 𝜎j2,j3

2

𝜓X =
𝜎i0,i2 + 𝜎i1,i2 + 𝜎i0,i3 + 𝜎i1,i3 + 𝜎j0,j2 + 𝜎j1,j2 + 𝜎j0,j3 + 𝜎j1,j3

8
Alternatively, if treatment is administered beginning at t = 1, these

covariance terms become:

𝜓B = (not defined for only 1 pre-treatment period)

𝜓A =
𝜎i1,i2 + 𝜎i1,i3 + 𝜎i2,i3 + 𝜎j1,j2 + 𝜎j1,j3 + 𝜎j2,j3

6

𝜓X =
𝜎i0,i1 + 𝜎i0,i2 + 𝜎i0,i3 + 𝜎j0,j1 + 𝜎j0,j2 + 𝜎j0,j3

6
Assumption 5 generalizes this structure to a model with J units

across m pre-treatment periods and r post-treatment periods. Equation
(2) shows that greater average covariance in the pre- or post-treatment
periods (𝜓B or 𝜓A) increases the MDE. Intuitively, as errors for treated

15 Our SCR formula differs from that of McKenzie in one additional way:
McKenzie’s empirical specification does not include a unit fixed effect, whereas
the estimator underlying the SCR model does. This fixed effect absorbs any con-
stant serial correlation of composite errors, leaving no remaining serial corre-
lation between the idiosyncratic error terms of our SCR model. Thus, constant
serial correlation in McKenzie’s framework translates to no serial correlation
in our SCR framework. Section 2.2.3 discusses the implications of removing
constant serial correlation from the true DGP, and Section 2.2.2 considers alter-
native treatment effect estimators.

16 We show only the lower diagonal of the variance-covariance matrix because
𝛀 is symmetric. We also omit the cross-unit covariance terms for notational
convenience, which are zero under Assumption 4.

and control units are more serially correlated, the benefits of collect-
ing multiple waves of pre- and post-treatment data are eroded. How-
ever, cross-period covariance (𝜓X) enters Equation (2) negatively. This
highlights a key property of the DD estimator: because DD identifies
the treatment effect off of differences between post- and pre-treatment
outcomes, greater serial correlation between pre- and post-treatment
observations makes differences caused by treatment easier to detect.

Assuming that the within-unit correlation structure does not vary
systematically across time periods, positively correlated errors will
imply positive 𝜓B, 𝜓A, and 𝜓X . Because 𝜓B and 𝜓A enter the SCR
formula positively, while 𝜓X enters negatively, serial correlation may
either increase or decrease the MDE relative to the McKenzie i.i.d. case.
Specifically, serial correlation will increase the MDE if and only if:(m − 1

m

)
𝜓B +

( r − 1
r

)
𝜓A > 2𝜓X (4)

This inequality is more likely to hold in longer panels, for two rea-
sons. First, as the number of pre- and post-treatment periods increases,(

m−1
m

)
and

(
r−1

r

)
approach one. Second, the covariance terms con-

tributing to 𝜓X lie farther away from the diagonal of the variance-
covariance matrix than the covariance terms contributing to 𝜓B and
𝜓A. Because errors from non-adjacent time periods are likely to be less
correlated than errors from adjacent time periods, and because the num-
ber of far-off-diagonal covariances increases relatively more quickly for
𝜓X as the panel becomes longer, 𝜓X is increasingly likely to be smaller
than 𝜓B and 𝜓A in longer panels.17

2.1.2. Monte Carlo simulations
If a randomized experiment relies on a power calculation that fails

to properly account for serial correlation ex ante, its realized power
may be different from the desired 𝜅. To understand the extent to which
this matters in practice, we conduct a series of Monte Carlo simula-
tions comparing the McKenzie model and the SCR model over a range
of panel lengths and error correlations. We simulate three cases and
compute the Type I error rate and the statistical power for each: (i)
experiments that fail to account for serial correlation in 𝜔it (i.e. the
idiosyncratic component of error term) both ex ante and ex post; (ii)
experiments that fail to account for serial correlation in 𝜔it ex ante but
apply the CRVE to account for serial correlation ex post; and (iii) exper-
iments that both account for serial correlation in 𝜔it ex ante and apply
the CRVE ex post.

For each set of parameter values characterizing both a data gener-
ating process and an experimental design, we first calculate two treat-
ment effect sizes: 𝜏McK equal to the MDE from the McKenzie formula,
and 𝜏SCR equal to the MDE from our SCR formula. Second, we use these
parameter values to create a panel dataset from the following DGP:

Yit = 𝛽 + 𝜐i + 𝛿t + 𝜔it (5)

where 𝜔it follows an AR(1) process:

𝜔it = 𝛾𝜔i(t−1) + 𝜉it (6)

Third, we randomly assign treatment, with effect sizes 𝜏McK, 𝜏SCR, and
𝜏0 = 0 at the unit level, to create three separate outcome variables.
Fourth, we regress each of these outcome variables on their respec-
tive treatment indicators and include unit fixed effects and time fixed
effects. Fifth, we compute both OLS standard errors and CRVE standard
errors clustered at the unit level, for all three regressions. We repeat

17 This analytical result illustrates how the correlation structure impacts the
variance of estimators that use both pre- and post-treatment data. Fig. 10 below
demonstrates that, in cases with strong serial correlation, adding time peri-
ods can actually increase the MDE. This is not specific to the DD estimator:
Appendix Fig. C3 shows the same pattern for power calculations using the
ANCOVA estimator.

4



F. Burlig et al. Journal of Development Economics 144 (2020) 102458

steps two through five 10,000 times for each set of parameters, calcu-
lating rejection rates of the null hypothesis 𝜏 = 0 across all simula-
tions. For 𝜏McK and 𝜏SCR, this rate represents the realized power of the
experiment. For the placebo 𝜏0, it represents the realized false rejection
rate.

We test five levels of the AR(1) parameter: 𝛾 ∈ {0,0.3,0.5,0.7,0.9}.
For each 𝛾 , we simulate symmetric panels with an equal number of
pre-treatment and post-treatment periods, with panel lengths ranging
from 2 periods (m = r = 1) to 40 periods (m = r = 20). We hold
J, P, 𝛽, 𝜎2

𝜐 , 𝜎2
𝛿
, 𝛼, and 𝜅 fixed across all simulations, and we adjust the

variance of the white noise term 𝜎2
𝜉

such that every simulation has a
fixed idiosyncratic variance 𝜎2

𝜔.18 This allows 𝛾 to govern the propor-
tion of 𝜎2

𝜔 that is serially correlated.19 The covariance terms 𝜓B, 𝜓A,
and 𝜓X have closed-form expressions under the AR(1) structure, and
we use these expressions to calculate 𝜏SCR.20 This causes 𝜏SCR to vary
both with the degree of serial correlation and panel length, whereas
𝜏McK varies only with panel length.

Fig. 1 displays the results of this exercise. The left column shows
rejection rates under the McKenzie formula using OLS standard errors,
which assumes zero serial correlation in 𝜔it both ex ante and ex post.
The middle column shows rejection rates under the FP formula using
CRVE standard errors, which accounts for serial correlation in 𝜔it ex
post only. The right column show rejection rates under our SCR for-
mula using CRVE standard errors, which allows for serial correlation in
𝜔it both ex ante and ex post. The top row plots realized power as a func-
tion of the number of pre/post-treatment periods, which should equal
𝜅 = 0.80 in a properly designed experiment. The bottom row plots
the corresponding realized false rejection rates, which should equal the
desired 𝛼 = 0.05. Only the SCR formula, in conjunction with CRVE
standard errors, achieves the desired 0.80 and 0.05 across all panel
lengths and AR(1) parameters.

The left column confirms the BDM result that failing to appropri-
ately account for serial correlation leads to false rejection rates dra-
matically higher than 𝛼 = 0.05. Even a modest AR(1) parameter of
𝛾 = 0.5 yields a 20 percent probability of a Type I error, for panels
with m = r > 5. This underscores the fact that randomization cannot
correct serial correlation in panel settings, and experiments that col-
lect multiple waves of data from the same cross-sectional units should
account for within-unit correlations over time. By contrast, the mid-
dle and right columns apply the CRVE and reject placebo effects at the
desired rate of 𝛼 = 0.05.

The middle column shows how failing to properly account for serial
correlation ex ante can yield dramatically overpowered or underpow-
ered experiments. Particularly for longer panels with m = r > 5,
performing power calculations via Equation (3) may actually produce
experiments with less than 50 percent power, even though researchers
intended to achieve power of 80 percent (i.e., 𝜅 = 0.80). For a rela-
tively high serial correlation of 𝛾 = 0.7, simulations based on the con-
ventional power calculation formula yield power less than 32 percent
for m = r > 10. This is consistent with the BDM finding that applying
the CRVE reduces statistical power, even though doing so achieves the
desired Type I error rate. By contrast, the right column applies both the
SCR power calculation formula and the CRVE, and these simulations

18 Note that 𝜎2
𝜔 is a parameter of the DGP, as described in Assumption 1; it is

not a function of a particular realization of data, desired experiment length, or
estimating equation. In this section, we ignore the practicalities of estimating
𝜎2
𝜔 (and other DGP parameters) because we know their true underlying values.

See Appendix D.1 for a detailed discussion of how to estimate these parameters
from data.

19 In an AR(1) model, the relationship between the variance of the AR(1)
process and the variance of the white noise disturbance depends on 𝛾 , with
𝜎2
𝜔 = 𝜎2

𝜉

1−𝛾2 .
20 Appendix B.1 provides these derivations, along with further details on these

Monte Carlo simulations.

achieve the desired power of 𝜅 = 0.80 for each value of 𝛾.
The middle column also highlights how failing to account for serial

correlation ex ante may either increase or decrease statistical power,
as shown in Equation (4). For shorter panels, using the FP formula
instead of our SCR formula yields dramatically overpowered experi-
ments. While this may seem counterintuitive, Equation (4) is increas-
ingly unlikely to hold as m and r decrease to 1. In the extreme case
where m = r = 1, 𝜓B and 𝜓A do not enter, and the only covariance
term in the SCR formula is 𝜓X , which enters negatively. These simula-
tions reveal that just as higher 𝛾 yields more dramatically underpow-
ered experiments for longer panels, higher 𝛾 yields more dramatically
overpowered experiments for shorter panels.21

These results are striking. For even a modest degree of AR(1) serial
correlation, applying the McKenzie power calculation formula will not
yield experiments of the desired statistical power. By contrast, the SCR
formula achieves the desired power for all panel lengths and AR(1)
parameters. While AR(1) is a relatively simple correlation structure, it
serves as a reasonable first-approximation for more complex forms of
serial correlation. Given that real-world panel datasets exhibit enough
serial correlation to produce high Type I error rates, it stands to reason
that such serial correlation can similarly impact the statistical power of
experiments if not properly accounted for ex ante.

2.2. Sensitivities

2.2.1. Short panels
While experiments with long panels have become increasingly com-

mon, short-panel experiments remain a development economics sta-
ple. Our SCR formula generalizes to panels as short as 2 periods
(m = r = 1), where Equation (2) simplifies to:

MDE = (tJ1−𝜅 + tJ
𝛼∕2)

√(
1

P(1 − P)J

)[
2𝜎2

𝜔 − 2𝜓X
]

(7)

Notably, 𝜓B and 𝜓A are no longer defined for m = r = 1. However,
𝜓X remains, meaning that the wedge between the SCR and McKen-
zie formulas also remains. By omitting 𝜓X (which enters Equation (7)
negatively), the McKenzie formula will tend to yield over-powered two-
period experiments.

It may be unintuitive that serial correlation still matters in a two-
period panel, which is isomorphic to a cross-sectional first-differences
model, and does not require clustered standard errors to achieve the
desired Type I error rate. However, unlike the Type I error rate, statis-
tical power (i.e. 1 minus the Type II error rate) is a function of the vari-
ance of the treatment effect estimator, which depends on 𝜓X. Hence,
ignoring 𝜓X from Equation (7) will bias MDE upward, likely leading
researchers to choose an unnecessarily large J.22

To illustrate the difference between the SCR and McKenzie formulas
for short panel experiments, we extend Fig. 1 for panels with between 1
and 6 pre/post-treatment periods. We again simulate data with serially
correlated errors of varying AR(1) parameters 𝛾, and calibrate treat-
ment effect sizes using each power calculation formula. Fig. 2 displays
realized power for panels with 1 ≤ m ≤ 6 and 1 ≤ r ≤ 6, varying
m and r independently. Across all levels of non-zero serial correlation
(𝛾 > 0), the McKenzie formula yields over-powered experiments for
panels with either 1 pre-treatment or 1 post-treatment period. Consis-
tent with Fig. 1, realized power under the McKenzie formula decreases

21 Intuitively, serial correlation has two opposite effects on the statistical
power of a DD estimator. It decreases power by reducing the effective number
of observations for each cross-sectional unit, and it increases power by increas-
ing the signal in estimating treatment effects off of a post−pre difference. In
shorter panels, this second effect tends to dominate.

22 Appendix A.2.4 mathematically demonstrates how power depends on 𝜓X

even in a two-period panel, despite the fact that the false rejection rate in a
two-period panel is independent of 𝜓X .
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Fig. 1. Standard methods result in improperly powered experiments in AR(1) data. Notes: This figure displays power and false rejection rates from performing
power calculations with three different sets of assumptions, using simulated data with AR(1) processes (with differing levels of serial correlation) and differing
panel lengths (ranging from 2 (m = r = 1) to 40 (m = r = 20) periods). In the left column, we apply the standard McKenzie formula (Equation (3), which assumes
away non-constant serial correlation), and use OLS standard errors ex post, in line with the assumptions of this formula. In the middle column, we again apply
the McKenzie formula, but cluster standard errors ex post—which is inconsistent with the ex ante formula, but corrects for within-unit serial correlation following
Bertrand et al. (2004). In the right column, we apply our serial-correlation-robust formula (Equation (2), which accounts for non-i.i.d. errors ex ante), and cluster
standard errors ex post. As expected, this third set of simulations achieves the desired 80 percent power and 5 percent false rejection rate.

monotonically as panel length increases; the longer the panel, the more
likely the McKenzie formula is to deliver underpowered experiments.
While the McKenzie formula yields overpowered short panel experi-
ments using these simulated data, it can yield underpowered experiments
in real data, even for short panels.23 By contrast, experiments calibrated
using the SCR formula achieve the desired power regardless of panel
length.

2.2.2. Alternative estimators
Our SCR power calculation formula assumes that researchers will

employ a DD estimator with unit and time fixed effects. However, par-
ticularly in experiments with short panels, researchers often choose
to use one of two alternative approaches: a simplified differences-in-
differences estimator or an analysis of covariance (ANCOVA) estimator.

Simplified differences-in-differences Researchers often estimate
DD models that replace a full set of unit and time fixed effects with a
treatment group dummy and/or post-period dummy, respectively. The
resulting estimating equation takes the following form:

Yit = 𝛽 + 𝜏
[
Treati × Postt

]
+ 𝜐

[
Treati

]
+ 𝛿

[
Postt

]
+ 𝜀it (8)

where Treati = 1 if unit i is in the treatment group, and Postt = 1 for
all post-treatment periods. Fig. 3 explores how the McKenzie and SCR

23 See Appendix Fig. C1.

formulas perform under three alternative ex post DD estimating equa-
tions, which alter our original DD estimating equation by: (i) replac-
ing unit fixed effects with a Treati dummy, (ii) replacing time fixed
effects with a Postt dummy, and (iii) replacing both sets of fixed effects
with dummies (Equation (8)). In all cases, we use the same DGP as in
Assumption 1, which includes idiosyncratic unit and time shocks; as
before, we simulate data following Equation (5), with an idiosyncratic
error term following an AR(1) process.

As in Fig. 1, the SCR formula achieves correctly powered exper-
iments at all levels of serial correlation, for all three DD estimators
in Fig. 3. This is because all three yield the same treatment effect
estimator—and therefore have the same variance—as our original DD
estimating equation with unit and time fixed effects. However, these
different estimating equations have varying levels of serial correlation
in the error term. Using OLS standard errors would produce differ-
ent estimates of the variance, even though the true underlying vari-
ance is the same across these estimating equations. On the other hand,
with randomized treatment, the CRVE (clustered at the unit level) cor-
rectly estimates the (same) variance in all cases, because it accounts
for serial correlation within unit, regardless of whether that correla-
tion enters through the underlying error structure or the omission of
fixed effects.24 Realized power under the McKenzie formula is like-

24 Appendix A.4 mathematically shows that the DD estimator in Equation (8)
has the same variance as the DD estimator with unit and time fixed effects.
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Fig. 2. Power in short panels – AR(1) data. Notes: This figure repeats the same simulation exercise as Fig. 1, except that we separately vary the number of pre-
treatment and post-treatment periods. Each panel conducts simulations with a distinct number of pre-treatment periods (1 ≤ m ≤ 6), and each horizontal axis varies
the number of post-treatment periods (1 ≤ r ≤ 6). Dotted lines report realized power for experiments calibrated using the McKenzie formula (i.e. the top-middle
panel of Fig. 1), while solid lines report realized power using the SCR formula (i.e. the top-right panel of Fig. 1). For all cases where m = 1 or r = 1, the McKenzie
formula yields over-powered experiments across the full range of positive AR(1) parameters. This shows that traditional “one baseline, one follow-up” experiments
will calibrate to excessively large sample sizes if they ignore non-constant serial correlation ex ante. The SCR formula is properly powered in all cases.

wise equivalent across all three alternative estimators, yielding over-
powered experiments in short panels and underpowered experiments
in long panels. In Fig. 5 below, we extend this analysis to also consider
alternative DGPs.

ANCOVA Another common strategy, particularly in short panels, is
to employ the analysis of covariance (ANCOVA) estimator.25 To do this,
the econometrician estimates the following specification using post-
treatment data only:

Yit = 𝛼 + 𝜏Di + 𝜃YB
i + 𝜀it (9)

where YB
i = ∑0

t=−m+1 Yit is the pre-treatment average value of the
dependent variable for unit i. This estimator has become popular in
economics, as it is more efficient than the DD model with the same
number of periods (McKenzie (2012)).

Frison and Pocock (1992) also derive a power calculation formula
for the ANCOVA estimator, based on the same assumptions as their DD

25 In a randomized setting where unit fixed effects are not needed for identifi-
cation, this method may be preferred to DD because it more efficiently estimates
𝜏 (Frison and Pocock (1992)). McKenzie (2012) notes that under constant serial
correlation (i.i.d. 𝜔it in our SCR framework), ANCOVA is always more efficient
than the DD model with the same number of time periods, but that these gains
are eroded as the intracluster correlation coefficient increases. These gains are
also eroded as the number of pre-treatment periods increases. Neither Frison
and Pocock (1992) nor McKenzie (2012) handles the fully general case of arbi-
trary serial correlation. Teerenstra et al. (2012) begins with a similar setup for
the ANCOVA framework, but considers the m = r = 1 case only, obviating the
need to address the CRVE-related issues raised here.

formula. As with the DD estimator, McKenzie draws on a more restric-
tive FP formula, which assumes constant serial correlation within each
panel unit. McKenzie’s formula (henceforth McKenzie ANCOVA) has
become the standard for ANCOVA power calculations, which we adapt
to our notation:

MDE ≈ (tJ1−𝜅 + tJ
𝛼∕2)

√(
1

P(1 − P)J

)[
(1 − 𝜃)2𝜎2

𝜐 +
(
𝜃2

m
+ 1

r

)
𝜎2
𝜔

]
(10)

where 𝜃 = m𝜎2
𝜐

m𝜎2
𝜐+𝜎2

𝜔
.26

Importantly, deriving this formula under non-constant within-unit
serial correlation necessitates an additional simplifying assumption for

26 Our McKenzie ANCOVA formula differs slightly from that in McKenzie
(2012) and Frison and Pocock (1992, page 1693). These previous derivations
have assumed that the true data generating process follows Equation (9), where
post-treatment outcomes are determined in part by pre-treatment outcomes. We
instead assume unit-specific random effects, as in Assumption 1. FP and McKen-
zie assumed deterministic time shocks with no variance, or 𝜎2

𝛿
= 0. We instead

must assume that there are no time shocks for analytical tractability. While
both data generating processes yield identical treatment effect estimators, they
imply different variances of this estimator. As in Frison and Pocock (1992) and
McKenzie (2012), our McKenzie ANCOVA formula is approximate because we
ignore sampling error in the estimation of 𝜃, which approaches zero as the
number of units increases.
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Fig. 3. SCR outperforms traditional methods with alternative estimators. Notes: This figure repeats the same simulation exercise as Fig. 1, except that each panel
alters the ex post DD estimating equation. The left panel replaces unit fixed effects with a Treati dummy. The middle panel replaces time fixed effects with a Postt
dummy. The right panel replaces both sets of fixed effects with Treati and Postt dummies. Dotted lines report realized power for experiments calibrated using the
McKenzie formula (i.e. the top-middle panel of Fig. 1), while solid lines report realized power using the SCR formula (i.e. the top-right panel of Fig. 1). All three DD
estimating equations yield power that is identical to Fig. 1 (estimated with unit and time fixed effects). This is because the variance of these estimators is a function
of the underlying error structure, and the CRVE correctly accounts for unmodeled serial correlation in each case. Hence, the performance gap between McKenzie vs.
SCR formulas remains for all DD estimators, provided that researchers account for serial correlation when conducting ex post inference.

analytical tractability: we must assume away time shocks.27 Under
this assumption, we derive the variance of the ANCOVA estimator
allowing for arbitrary serial correlation, along with the correspond-
ing serial-correlation-robust power calculation formula (henceforth SCR
ANCOVA):

MDE ≈ (tJ1−𝜅 + tJ
𝛼∕2)×√

1
P(1−P)J

[
(1 − 𝜃)2𝜎2

𝜐 +
(
𝜃2
m + 1

r

)
𝜎2
𝜔 + 𝜃2(m−1)

m 𝜓B + r−1
r 𝜓

A − 2𝜃𝜓X
]

(11)

where 𝜃 = m𝜎2
𝜐+m𝜓X

m𝜎2
𝜐+𝜎2

𝜔+(m−1)𝜓B .28

Fig. 4 compares the McKenzie vs. SCR ANCOVA formulas, using
simulations analogous to Fig. 1. For each level of the AR(1) parame-
ter and panel length, we compute the treatment effect size 𝜏 implied
by each ANCOVA formula. Unlike Figs. 1–3, these simulations use a
data-generating process without random time shocks (i.e. 𝜎2

𝛿
= 0), for

consistency with the assumptions underlying Equations (10)–(11). The
McKenzie ANCOVA formula produces properly-powered experiments
only when idiosyncratic errors are i.i.d., while the SCR ANCOVA is
robust to all levels of AR(1) serial correlation.

Even though the SCR ANCOVA formula outperforms the McKenzie
ANCOVA formula in the presence of AR(1) errors, we do not recom-
mend that researchers use this formula in real-world applications (even

27 Frison and Pocock (1992) and McKenzie (2012) both assume away random
time shocks. A critical step in the derivation of the ANCOVA model with time
shocks and arbitrary serial correlation requires us to calculate a conditional
expectation that depends on the error term 𝜀it and the pre-period mean YB

i of
every unit in the experiment, which becomes analytically intractable for any
reasonable number of experimental units. See Appendix A.2.5 for more details.
By contrast, the variance of the DD estimator depends on the distribution of
errors conditional on only the treatment indicator, which is orthogonal to the
error terms by randomization.

28 We present the formal derivation of the SCR ANCOVA formula in
Appendix A.2.5. For analytical tractability, we assume that the 𝜓 parameters
are uniform across all units. We also ignore sampling error in the estimation of
𝜃, which approaches zero as the number of units increases; Frison and Pocock
(1992) and McKenzie (2012) also make this simplification. Through additional
Monte Carlo simulations, we confirm that neither of these assumptions is likely
to affect statistical power.

in short panels). Time shocks with non-zero variance are a common
feature of panel data, and assuming them away may result in improp-
erly powered experiments. We discuss this further in Section 3 below,
where we apply our SCR methods to real data. If researchers plan to
use the ANCOVA estimator, we recommend that they perform power
calculations by simulation, as discussed in Section 4.2.2 below.

2.2.3. Alternative data generating processes
In addition to considering alternative estimators, we also inves-

tigate the effectiveness of the SCR power calculation formula under
alternative DGPs. We consider three cases: (i) deterministic unit effects
(𝜎2
𝜐 = 0), (ii) deterministic time effects (𝜎2

𝛿
= 0), and (iii), deterministic

unit and time effects (𝜎2
𝜐 = 𝜎2

𝛿
= 0). Given that each is simply a special

case of the DGP in Assumption 1, we expect the SCR to continue to
achieve the desired power. However, these cases provide more favor-
able conditions to test the McKenzie formula: in the absence of random
unit or time shocks, the variance of the composite error term is the same
as the variance of the idiosyncratic error term (𝜔it).

We test the relative performance of the SCR and McKenzie formulas
in Fig. 5. The top row presents simulations using the three alternative
DGPs, while holding the fixed effects estimator fixed. In the bottom row,
we match each DGP with its “matched” estimator (e.g., for the DGP with
deterministic unit effects, we replace unit fixed effects with a Treati
dummy). The SCR formula yields correctly powered experiments, even
under alternative DGPs with misspecified ex post estimators. In contrast,
the McKenzie formula generates improperly powered experiments even
in the absence of unit and time shocks. Next, we test the performance
of the SCR formula when we do not control the DGP, using real-world
panel data.

3. Applications to real-world data

3.1. Bloom et al. (2015) data

In this section, we conduct an analogous simulation exercise using a
real dataset from an experiment in a developing-country setting. These
data come from Bloom et al. (2015), in which Chinese call center
employees were randomly assigned to work either from home or from

8
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Fig. 4. Standard ANCOVA methods fail under serial cor-
relation. Notes: This figure repeats the same simulation
exercise as Fig. 1, using ANCOVA power calculation for-
mulas ex ante and an ANCOVA estimating equation ex
post. The left panel calibrates MDE using the McKen-
zie ANCOVA formula (Equation (10), and is analogous
to the top-middle panel of Fig. 1. The right panel cali-
brates MDE using the SCR ANCOVA formula (Equation
(11), and is analogous to the top-right panel of Fig. 1.
Both set of simulations estimate Equation (9) ex post,
cluster standard errors by unit, and simulate DGPs with-
out random time shocks (𝜎2

𝛿
= 0). As in the DD sim-

ulations, the McKenzie ANCOVA formula fails to gen-
erate correctly-powered experiments, whereas the SCR
formula is properly powered across all panel lengths and
degrees of AR(1) correlation.

Fig. 5. SCR outperforms traditional methods with alternative DGPs. Notes: This figure repeats the same simulation exercise as Fig. 1, for alternative DGPs and DD
estimating equations. The left column removes random unit effects from the DGP (𝜎2

𝜐 = 0); the middle column removes random time effects from the DGP (𝜎2
𝛿
= 0);

and the right column removes both random unit effects and random time effects (𝜎2
𝜐 = 𝜎2

𝛿
= 0). The top row uses an ex post estimator with unit and time fixed

effects (as in Fig. 1, albeit now misspecified); the bottom rows replaces fixed effects with dummy variables (Treati and/or Postt, as in Fig. 3) to align with each DGP,
respectively. Dotted lines report realized power for experiments calibrated using the McKenzie formula (i.e. the top-middle panel of Fig. 1), while solid lines report
realized power using the SCR formula (i.e. the top-right panel of Fig. 1). In all cases, our results are identical to Fig. 1 (DGP with random unit and time effects; DD
estimator with unit and time fixed effects). This show that our SCR formula is robust to alternative DGPs, which may not match the DD estimator. By contrast, the
McKenzie formula continues to perform poorly in the presence of non-constant serial correlation—even after removing intracluster correlation, random time shocks,
and fixed effects.
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the office for a nine-month period.29 The authors estimate the following
equation to derive the central result, reported in Table 2 in the original
paper:

Performanceit = 𝛼Treati × Experimentt + 𝛽t + 𝛾i + 𝜀it (12)

This is a standard DD estimating equation with fixed effects for individ-
ual i and week t. From this model’s residuals, we estimate an AR(1)
parameter of �̂� = 0.233, which is highly statistically significant and
indicates that these worker performance data exhibit weak serial corre-
lation.

We perform Monte Carlo simulations on this dataset that are anal-
ogous to those presented above. We subset consecutive periods of the
Bloom et al. (2015) dataset to create panels ranging in length from 2
periods (m = r = 1) to 20 periods (m = r = 10). For each sim-
ulation panel length, we randomly assign three treatment effect sizes,
𝜏McK , 𝜏AR(1), and 𝜏SCR, at the individual level and estimate Equation
(12) separately for each treatment effect size. We calibrate 𝜏McK using
the McKenzie formula that assumes no serial correlation30; 𝜏AR(1) using
the SCR formula with 𝜓 parameters consistent with an AR(1) error
structure of 𝛾 = 0.233; and 𝜏SCR using the SCR formula with non-
parametrically estimated 𝜓�̂� parameters. We define 𝜎2

�̂�
, 𝜓B

�̂�
, 𝜓A

�̂�
and 𝜓X

�̂�
to be the estimated analogues of 𝜎2

𝜔, 𝜓B, 𝜓A, and 𝜓X , where the sub-
script �̂� denotes the variance/covariance of residuals rather than errors.
Unlike Section 2.1.2 above, where the simulated DGP is known, real
datasets require researchers to estimate these residual-based parame-
ters to properly implement our SCR formula.31

Fig. 6 reports the results of this exercise, demonstrating that only
the SCR formula achieves the desired statistical power in the Bloom et
al. (2015) data. Failing to account for non-constant serial correlation
leads to experiments that deviate dramatically from 80 percent power,
even when that serial correlation is relatively weak. For an experiment
with 10 pre/post-treatment periods, applying the McKenzie formula
with 𝜅 = 0.80 yields an experiment with only 51 percent power. This
is consistent with our results from simulated data, demonstrating that
researchers can calibrate a panel RCT to 80 percent power if the ex ante
formula properly accounts for the within-unit correlation structure of
the data.32

ANCOVA in real data The ANCOVA estimator is more efficient than
the DD estimator. As discussed in Section 2.2.2, for DGPs with no time
shocks, our SCR ANCOVA formula can achieve properly powered exper-
iments; however, an SCR ANCOVA formula that accommodates random
time shocks is not analytically tractable. Here, we test McKenzie and
SCR ANCOVA formulas using the Bloom et al. (2015) data, where the

29 This dataset consists of weekly performance measures for the 249 workers
enrolled in the experiment between January 2010 and August 2011. We keep
only those individuals who have non-missing performance data for the entire
pre-treatment period, leaving us with a balanced panel of 79 individuals over
48 pre-treatment weeks (a different sample from that in the paper). Our pur-
pose with this exercise is not to comment on the statistical power of the original
paper, but rather to investigate the importance of accounting for serial correla-
tion ex ante in real experimental data. Appendix B.2 provides more information
on this simulation dataset, including summary statistics.

30 In Appendix C.4, we apply McKenzie’s alternative empirical approach: cal-
culating 𝜏McK−Avg by parameterizing his power calculation formula using the
average autocorrelation for panels of length (m + r). In both this dataset and
the Pecan Street data described in Section 3.2, this alternative approach yields
underpowered experiments, except in two-period panels where m = r = 1.

31 Appendix D.1 explains how to estimate these residual-based parameters,
which is not trivial and requires small-sample corrections. Appendix E shows
how to correct for estimation bias in 𝜎2

�̂�
, 𝜓B

�̂�
, 𝜓A

�̂�
and 𝜓X

�̂�
, in order to calcu-

late an unbiased MDE. In real-world settings, researchers will need to estimate
parameters of an unobserved DGP, as we do here.

32 Appendix C.1 replicates the sensitivity analyses from Section 2.2 using the
Bloom et al. (2015) data (and the Pecan Street data discussed below). We again
find that the SCR formula achieves 80 percent power for short panels and DD
estimators without fixed effects, while the McKenzie formula fails in both cases.

Fig. 6. Power simulations for Bloom et al. (2015) data. Notes: This figure
shows results from Monte Carlo simulations using Bloom et al. (2015) data.
Each curve plots realized power for a DD experiment with a certain number
of pre/post-treatment periods (from m = r = 1 to m = r = 10), using different
ex ante assumptions. The long-dashed line applies the McKenzie formula (Equa-
tion (3)), which assumes away non-constant serial correlation. The short-dashed
line applies the SCR formula, under the assumption of AR(1) serial correlation
(using Equation (6) to estimate an AR(1) parameter). The solid line applies the
SCR formula (Equation (2)), where we non-parametrically estimate 𝜓B

�̂�
, 𝜓A

�̂�
,

and 𝜓X
�̂�

terms from the (residualized) Bloom et al. (2015) dataset. All simula-
tions apply the CRVE ex post, clustering at the individual level. Only the SCR
formula achieves the desired 80 percent power, even though the Bloom et al.
(2015) data exhibit relatively weak serial correlation.

true DGP is unknown, and may contain time shocks. Fig. 7 displays the
results of these power calculations in simulated experiments of vary-
ing length, with m ∈ {1,5,10} and 1 ≤ r ≤ 10. Neither formula con-
sistently yields properly powered experiments. The McKenzie formula
comes closest with one pre-treatment period and many post-treatment
periods, but performs poorly for m > 1 or r < 4. On the other hand,
the SCR ANCOVA performs reasonably well with 10 pre-treatment peri-
ods, but yields overpowered experiments with m ≤ 5 or r < 5.

Given that neither formula delivers properly-powered experiments
with real data, we caution against using ANCOVA power calculation
formulas in practice. When researchers intend to estimate an ANCOVA
model ex post, we suggest they conduct ex ante power calculations using
simulation-based methods (see Section 4.2.2 below).33

3.2. Pecan Street data

Having demonstrated the importance of properly accounting for
serial correlation using data from an RCT in a developing country set-
ting, we now turn to a much higher-frequency dataset with higher serial
correlation: household electricity consumption in the United States
(Pecan Street (2016)).34 Electricity consumption data tend to exhibit
high within-household autocorrelation, making them particularly well-
suited for this analysis. Additionally, RCTs using energy consumption

33 If researchers lack access to pre-existing data for performing simulations,
one option is to apply the SCR DD power calculation formula to calibrate the
sample size ex ante, but then estimate ANCOVA ex post. Since ANCOVA is
(weakly) more efficient than DD, this will tend to yield overpowered experi-
ments.

34 Pecan Street is a research organization, based at the University of Texas
at Austin, that makes high-resolution energy usage data available to aca-
demic researchers. The raw data, which are available with a login from
https://dataport.pecanstreet.org/data/interactive, consist of hourly electricity
consumption for 699 households over 26,888 hours. Appendix B.3 provides
further detail on both these data and the ensuing simulations.
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Fig. 7. ANCOVA power calculations in real data. Notes: This figure repeats the same exercise as Fig. 6, for ANCOVA experiments simulated on the Bloom et al. (2015)
dataset. Each panel simulates experiments with a certain number of pre-treatment periods (m ∈{1, 5, 10}), and horizontal axes vary the number of post-treatment
periods (1 ≤ r ≤ 10). Dotted lines apply the McKenzie ANCOVA formula ex ante (Equation (10)), which assumes away non-constant serial correlation. Solid lines
apply the SCR ANCOVA formula ex ante (Equation (11)), where we non-parametrically estimate 𝜓B

�̂�
, 𝜓A

�̂�
, and 𝜓X

�̂�
terms from the (residualized) Bloom et al. (2015)

dataset. All cases estimate ANCOVA ex post (Equation (9)), clustering standard errors by individual. Both formulas generate improperly powered experiments with
real data that likely have time shocks, which neither formula can account for.

data are becoming increasingly common in economics, making our
Pecan Street application relevant to this growing literature.35

We aggregate these data to four different temporal frequencies:
hourly, daily, weekly, and monthly, each with a different correlation
structures and amounts of idiosyncratic variation. This allows us to
compare the McKenzie vs. SCR power calculation formula over a range
of underlying error structures. We conduct Monte Carlo simulations
on all four temporal frequencies, following the same procedure as the
Bloom et al. (2015) simulations. Fig. 8 shows that in all four cases, real-
ized power sharply deviates from the desired 80 percent under both
the McKenzie assumption of i.i.d. idiosyncratic errors and an assumed
AR(1) structure. We achieve correctly powered experimental designs
only by applying the SCR method, which accounts for the full covari-
ance structure of the Pecan Street data.36

3.3. Power calculations in real data

To operationalize our SCR power calculation formula in practice,
researchers must assume values for 𝜎2

𝜔, 𝜓B, 𝜓A, and 𝜓X that reflect the
error structure likely to be present in (future) experimental datasets. In
the best case scenario, researchers have access to data that are represen-
tative of what will be collected in the field, and they can estimate these
variance and covariance terms from this pre-existing dataset.37 Plug-
ging these estimates into the SCR formula, researchers can evaluate the

35 For example, see Allcott (2011); Jessoe and Rapson (2014); Ito et al. (2018);
Fowlie et al. (2018); Fowlie et al. (2017); Allcott and Greenstone (2017); and
Jack and Smith (2019). There is also a large quasi-experimental literature that
uses energy consumption data.

36 As with the Bloom et al. (2015) dataset, we estimate parameters of the
unobserved DGP for each temporal frequency. Appendix C.4 shows again that
the McKenzie (2012, p. 215) approach yields underpowered experiments for all
four temporal frequencies for panels longer than 2 periods.

37 Appendix D.1 provides details on how to estimate 𝜎2
�̂�
, 𝜓B

�̂�
, 𝜓A

�̂�
, and 𝜓X

�̂�
from

pre-existing data, and Appendix E proves that power calculations using esti-
mated parameters recover the same MDE in expectation as those using true
parameters. The plausibility of estimating these parameters will vary across
settings. Researchers with implementing partners that have access to large
amounts of historical data may use these data to estimate 𝜎2

�̂�
, 𝜓B

�̂�
, 𝜓A

�̂�
, and

𝜓X
�̂�

. On the other hand, this may not be possible for experiments in completely
unstudied settings. See Appendix D.3 for more details on how to overcome a
lack of pre-experimental data.

tradeoffs between desired power (𝜅), number of units (J), pre- and post-
treatment observations per unit (m and r, respectively), proportion of
the population treated (P), and expected effect size (MDE).

We perform this procedure on the daily Pecan Street dataset to imi-
tate the design of an experiment that affects household electricity con-
sumption. We do so both assuming i.i.d. idiosyncratic errors (using the
McKenzie formula) and allowing for arbitrary serial correlation (using
the SCR formula). For simplicity, we consider only balanced panels
of households with the same number of observations before and after
treatment (i.e. m = r). For each panel length, we re-estimate 𝜎2

�̂�
and

𝜓�̂� terms from the daily Pecan Street data.38

We plot the results of this exercise in Fig. 9. The left panel applies
the McKenzie formula and assumes i.i.d. idiosyncratic errors. The right
panel applies the SCR formula, using our non-parametric estimates of
𝜓B
�̂�

, 𝜓A
�̂�

, and 𝜓X
�̂�

to reflect the real error structure of the data. Each
curve corresponds to experiments of a particular length (ranging from
m = r = 1 to m = r = 10), and plots the number of house-
holds (J) required to achieve 80 percent power as a function of MDE.
In all cases, longer panels lower J needed to achieve a given MDE.
However, the McKenzie formula always calls for substantially fewer
households than the SCR formula. For example, with m = r = 10
and an MDE of 5 percent, the McKenzie formula solves for 123 house-
holds, while the SCR formula solves for 374 households—over 3 times
greater sample size. Hence, if a researcher in this setting applied the
CRVE ex post but assumes i.i.d. idiosyncratic errors ex ante, she would
likely include too few households to achieve the desired statistical
power.

4. Power calculations in practice

4.1. Trading off units and time periods

Recruiting participants, administering treatment, and collecting
data are all costly, and these implementation costs are often the lim-
iting factor in study size. We can use the power calculation framework
to conceptualize the optimal design of a panel RCT given a budget, by
couching it in a simple constrained optimization problem of the follow-

38 We fix P = 0.5, 𝜅 = 0.80, and 𝛼 = 0.05. See Appendix B.4 for details.
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Fig. 8. Power simulations for Pecan Street data. Notes: This figure conducts simulations that are identical to Fig. 6, using four Pecan Street datasets collapsed to
different levels of temporal frequency. Each curve plots realized power for a DD experiment with a certain number of pre/post-treatment periods (from m = r = 1
to m = r = 10), using different ex ante assumptions. The long-dashed lines apply the McKenzie formula (Equation (3)), which assumes away non-constant serial
correlation. The short-dashed lines apply the SCR formula, under the assumption of AR(1) serial correlation (using Equation (6) to estimate an AR(1) parameter).
The solid lines apply the SCR formula (Equation (2)), where we non-parametrically estimate 𝜓B

�̂�
, 𝜓A

�̂�
, and 𝜓X

�̂�
terms from the (residualized) Pecan Street data. All

simulations apply the CRVE ex post, clustering at the individual level. While each temporal frequencies exhibits a unique correlation structure, only the SCR power
calculation formula achieves the desired power in each case.

ing form:

min
P,J,m,r

MDE(P, J,m, r) s.t. C(P, J,m, r) ≤ B (13)

where C(P, J,m, r) is the cost of conducting an experiment and B is the
experiment’s budget.

The budget constraint creates a fundamental tradeoff between
including additional units and including additional time periods in the
experiment, since each comes at a cost.39 This tradeoff also arises from
differences in the marginal effects of units and time periods on the MDE.
Using our SCR formula, the “elasticities” of the MDE with respect to
number of units and number of time periods are:

𝜕MDE∕MDE
𝜕J∕J

= −1
2

39 Researchers may also adjust P to make an experimental design more cost
effective. An RCT will have the lowest MDE at P = 0.5, but if control units are
cheap compared to treatment units, the same power may be achieved at lower
cost by decreasing P and increasing J. See Duflo et al. (2007) for more details.
We also typically consider 𝛼 and 𝜅 to be fixed “by convention.” While 𝛼 is the
product of research norms, and therefore relatively inflexible, researchers may
want to adjust 𝜅. 1− 𝜅 is the probability of being unable to distinguish a true
effect from 0. In lab experiments which are cheaply replicated, researchers may
accept 𝜅 < 0.80, whereas in large, expensive field experiments that can only
be conducted once, researchers may instead wish to set 𝜅 > 0.80. Researchers
may also choose to size their experiments such that they achieve a power of 80
percent for the smallest economically meaningful effect, even if they expect the
true MDE to be larger.

𝜕MDE∕MDE
𝜕m∕m

= −1
2

⎡⎢⎢⎣
𝜎2
𝜔

m − 𝜓B

m − (m − 1) 𝜕𝜓
B

𝜕m + 2m 𝜕𝜓X

𝜕m(
m+r
mr

)
𝜎2
𝜔 +

(
m−1

m

)
𝜓B +

(
r−1

r

)
𝜓A − 2𝜓X

⎤⎥⎥⎦
𝜕MDE∕MDE

𝜕r∕r
= −1

2

⎡⎢⎢⎣
𝜎2
𝜔
r − 𝜓A

r − (r − 1) 𝜕𝜓
A

𝜕r + 2r 𝜕𝜓
X

𝜕r(
m+r
mr

)
𝜎2
𝜔 +

(
m−1

m

)
𝜓B +

(
r−1

r

)
𝜓A − 2𝜓X

⎤⎥⎥⎦
There is a constant elasticity of MDE with respect to J of −0.5, mean-

ing that a 1 percent increase in the number of units always yields a
0.5 percent reduction in the MDE. However, the elasticity of MDE with
respect to m and r depends on the error structure and panel length.40

For some parameter values, this elasticity can be positive, such that
increasing the length of the experiment would actually increase the
MDE. This may seem counter-intuitive, but adding time periods can
reduce the average covariance between pre- and post-treatment obser-
vations (𝜓X), which introduces more noise in the estimation of pre-vs.
post-treatment difference. For relatively short panels with errors that
exhibit strong serial correlation, this effect can dominate the benefits of
collecting more time periods.

Fig. 10 illustrates how adding time periods may either increase or
decrease power. The left panel plots the MDE of an experiment as a

40 Note that J, m, and r must all be integer-valued, hence these derivatives
serve as continuous approximations of discrete changes in these parameters.
Likewise, the partial derivatives of 𝜓B, 𝜓A, and 𝜓X with respect to m and r are
not technically defined, as these covariance terms are averaged over discrete
numbers of periods (as shown in Assumption 5).
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Fig. 9. Analytical power calculations – daily Pecan Street dataset. Notes: This figure shows the result of analytic power calculations on Pecan Street electricity
data, collapsed to the daily level. Each curve displays the number of units required to detect a given minimum detectable effect with 80 percent power. Each
iso-power curve corresponds to a particular panel length, with the shortest panel (1 pre-period, 1 post-period) in light blue, and the longest panel (10 pre-periods,
10 post-periods) in navy. The left panel shows a power calculation using the standard McKenzie (2012) formula, which does not accommodate non-constant serial
correlation. The right panel applies the serial-correlation-robust formula, which accounts for the real error structure of the data. In this setting, failing to account
for the full covariance structure will dramatically understate the sample size required to detect a given effect.

function of the number of pre- and post-treatment periods, holding the
number of units J constant. The right panel depicts the tradeoff between
adding units vs. time periods by plotting the combinations of J and
m = r that yield a given MDE. We use the SCR formula to analyti-
cally construct these curves, assuming AR(1) idiosyncratic errors with
varying 𝛾 values.

At low to moderate levels of serial correlation, increasing the panel
length always reduces MDE given J, and vice versa. However, at higher
levels of serial correlation, this relationship is no longer monotonic.
For 𝛾 ≥ 0.6, marginally increasing m or r in a relatively short panel
increases MDE for a given J, and likewise increases J required to
achieve a given MDE. This suggests that in settings with strong non-
constant serial correlation, adding periods of data might decrease statis-
tical power if the panel is not sufficiently long.41

4.2. Power calculations in STATA

To facilitate implementation of ex ante power calculations in prac-
tice, we have developed the STATA package pcpanel.42 This software
implements panel data power calculations that properly account for
serial correlation, a feature not present in STATA’s built-in power com-
mand.43 pcpanel operationalizes our SCR formula based on either
user-input assumptions on the correlation structure or nonparamet-
ric estimates of variance/covariance parameters from a pre-existing

41 McKenzie (2012) argues that stronger unit-specific shocks (i.e. higher 𝜎2
𝜐 )

can erode the benefits of collecting additional waves of data. Here, we extend
that argument to within-unit serial correlation, demonstrating that higher
autocorrelation in the idiosyncratic error term can similarly erode—and even
reverse—the benefits of increased panel length. This result reflects the analyti-
cal properties of estimators that leverage both pre- and post-treatment data, and
does not reflect the DD estimator over-controlling for pre-period data. Appendix
Fig. C3 replicates this figure using the SCR ANCOVA formula and finds the same
result.

42 pcpanel is available for download from SSC. Both Appendix D.4 and the
pcpanel help file describe the software package in further detail.

43 While power does allow for repeated-measures ANOVA, it cannot accom-
modate standard panel research designs used in economics, including DD and
ANCOVA. The previous STATA power calculations command, sampsi, did allow
for this, but it was depreciated as of 2013 and is no longer supported.

dataset. Our package also executes power calculations by simulation,
accommodating a range of experimental designs outside the scope of
this paper’s analytical framework.

4.2.1. Analytical DD power calculations
The program pc_dd_analytic conducts analytic power cal-

culations for DD experiments using our SCR formula (Equation
(2)). pc_dd_analytic takes (exactly two of) sample size (J), a
desired MDE, and a desired power (𝜅), and returns the third. It
behaves similarly to the legacy STATA function sampsi, except that
pc_dd_analytic accepts the idiosyncratic residual variance 𝜎2

𝜔, equal
to 𝜎2

𝜀 (1 − 𝜌) in the notation of McKenzie (2012).44

Users have two options for incorporating non-constant serial correla-
tion. First, they may allow the subprogram pc_dd_covar to nonpara-
metrically estimate the average covariance structure of a pre-existing
dataset, using the same procedure that generated the solid lines in
Figs. 6 and 8. By characterizing the relevant components of the data’s
actual correlation structure, pc_dd_covar enables users with repre-
sentative pre-existing data to accurately estimate 𝜎2

�̂�
, 𝜓B

�̂�
, 𝜓A

�̂�
, and 𝜓X

�̂�
,

in order to perform accurate ex ante power calculations (as in Section
3.1 above).45

Second, in the absence of pre-existing data, users may instead input
assumed within-unit AR(1) correlations (𝛾), assumed average idiosyn-

44 For example, -sampsi 0 10, n1(150) n2(150) pre(3) post(5)

sd(50) r1(0.3) m(change)- becomes -pc_dd_analytic, mde(10)

n(300) p(0.5) pre(3) post(5) var(1750)-, as 1750 = 502∗(1 − 0.3).
Both of these commands yield a power of 0.81. For very small sam-
ples, sampsi and pc_dd_analytic will yield slightly different results, as
pc_dd_analytic uses a finite-sample t distribution to calculate critical val-
ues, whille sampsi uses a normal distribution.

45 The option -depvar(y)- tells pc_dd_covar to nonparametrically esti-
mate the average covariance structure of the variable y, given the number
of pre- and post-treatment periods. pc_dd_covar implements the estimation
approach detailed in Appendix D.1, and pc_dd_analytic then applies the bias-
correction factors derived in Appendix E. Implementing this procedure correctly
is not trivial, and we encourage users with pre-existing data to use our software
to do so.
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Fig. 10. Analytical power calculations with increasing panel length. Notes: This figure displays the results of analytical power calculations using the SCR formula
for varying AR(1) parameters. The left panel shows the tradeoff between the minimum detectable effect (MDE) and the number of time periods (m = r) for varying
levels of serial correlation, holding the number of units fixed at J = 100 and normalizing MDE by the standard deviation of 𝜔it. At low levels of 𝛾 , MDE declines
monotonically in m and r. However, for higher 𝛾 , increasing m and r actually increases MDE when m = r is relatively small, and decreases MDE when m = r is
relatively large. The right panel shows the relationship between the number of units (J) and number of pre/post periods (m = r) required to detect an MDE equal
to one standard deviation of 𝜔it. Similarly, for low levels of serial correlation, the trade-off between J and m = r is monotonic. However, as 𝛾 increases, adding
periods in short panels necessitates a greater number of units to achieve the same MDE, while adding periods in longer panels means that fewer units are required
to achieve the same MDE. Appendix Fig. C3 replicates this result using the SCR ANCOVA formula.

cratic covariances (𝜓B, 𝜓A, 𝜓X), or assumed average idiosyncratic cor-
relations (𝜓B∕𝜎2

𝜔, 𝜓A∕𝜎2
𝜔, 𝜓X∕𝜎2

𝜔).46

4.2.2. Power calculations by simulation
Simulation-based power calculations are the most robust, flexible

strategy for designing experiments ex ante. Hence, pcpanel includes
the program pc_simulate, which enables researchers to implement
our simulation approach from Section 3.47 pc_simulate recovers the
ex ante power of a given experimental design and MDE—by simulat-
ing the ex post estimating equation on subsamples of a pre-existing
dataset.48 pc_simulate enables power calculations via simulation
for four standard treatment effect estimators: cross-sectional (“one-
shot”), repeated cross-sections (post-treatment periods only), DD, and
ANCOVA. Users may flexibly condition on pre-determined covariates
(e.g. household size) or more detailed fixed effects (e.g. unit interacted
with month-of-year), both common strategies to increase an experi-
ment’s power. pc_simulate also accommodates datasets in which a
longer panel has been collapsed to a single pre-treatment and post-
treatment period, as recommended by Bertrand et al. (2004) as a way

46 Alternatively, adding the option -ar1(0.4)- to -pc_dd_

analytic, mde(10) n(300) p(0.5) pre(3) post(5) var(1750)-

reduces power from 0.81 to 0.64. Figs. 6 and 8 illustrate how AR(1) imperfectly
approximates the correlation structures present in real data. However, we
provide this option for pc_dd_analytic to let users without pre-existing data
examine the sensitivity of their power calculations to differing levels of serial
correlation.

47 To construct the solid lines in Figs. 6 and 8 we perform both analytical
and simulation-based power calculations. For each panel length, we calculate
the MDE that achieves 80 percent power, based on nonparametric estimates
of the covariance structure (as in, run pc_dd_analytic, calling subprogram
pc_dd_covar). Then, we simulate (as in, run pc_simulate) to confirm that
realized power is indeed 80 percent.

48 Each iteration re-randomizes PJ units into treatment and adds MDE to
treated units’ outcomes for all post-treatment periods. Appendix D.2 outlines
this simulation algorithm in more detail. Users may also provide simulated
data based on a plausible DGP. Appendix D.3 provides guidance on conduct-
ing simulation-based power calculations in the absence of a representative pre-
existing dataset.

of controlling the false rejection rate.49

Finally, pc_simulate supports two additional randomization tech-
niques: stratified randomization and cluster randomization. For strati-
fied randomization, users identify one or multiple categorical covari-
ates (e.g. gender), and pc_simulate selects PJ treated units and
(1 − P)J control units within each stratification group. This random-
ization approach ensures balance across the treated and control groups.
For cluster randomization, users input a group identifier (e.g. village)
and pc_simulate randomizes groups of units into treatment (e.g.
selecting treated villages, rather than treated households). Users may
alter the number of units per group, and also vary the intensity of unit-
level treatment within treated groups.50

5. Conclusion

Randomized experiments are costly, and researchers should avoid
both underpowered experiments that are uninformative and overpow-
ered experiments that waste resources. Ex ante power calculations
enable researchers to design experiments with sample sizes that are
sufficient, but not excessive. As multi-wave data collection becomes
cheaper, panel RCTs are becoming increasingly common. Temporally
disaggregated data allow researchers to ask new questions, applying a
wider range of empirical methods (McKenzie (2012)).

In this paper, we develop a framework for panel data power cal-
culations, generalizing the standard power calculation formula for
difference-in-differences (originally derived by Frison and Pocock
(1992)) to accommodate fully arbitrary correlations in the error struc-

49 Collapsing to cross-sectional unit-specific averages (or two-period pre/post
averages for DD estimators) obviates the need to adjust the Type I error rate
using the CRVE. However, collapsing data does not obviate the need to account
for serial correlation in power calculations (see Appendix A.2.4).

50 pc_simulate does not allow for treatment spillovers, which would require
(essentially arbitrary) ex ante assumptions on the strength and direction of these
spillovers, which are beyond the scope of this work. Researchers interested in
randomized saturation designs should consult Baird et al. (2018), which con-
siders these designs in the cross-section. Appendix C.3 uses pc_simulate to
compare cluster randomized designs to unit-level randomization in simulated
data.
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ture. Unlike the power calculation formulas highlighted in McKenzie
(2012), our “serial-correlation-robust” formula achieves the desired
power in settings with arbitrary serial correlation. These results hold
in Monte Carlo simulations, real data from a panel RCT in China, and
household electricity consumption data similar to that used in panel
RCTs in the energy economics literature.

Our new method is robust to alternative difference-in-differences
estimators, to ANCOVA with deterministic time shocks, and to real-
world data generating processes. We also provide a framework for
trading off minimum detectable effects vs. sample sizes, while dis-
cussing practical issues in designing panel RCTs. Our accompany-
ing STATA package pcpanel executes both analytical and simulation-
based power calculations, and we recommend simulation-based meth-
ods when researchers have access to representative pre-existing data
ex ante. A productive avenue for future work would be extending the
treatment interference framework in Baird et al. (2018) to panel data
experiments.

Supplementary Appendix

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jdeveco.2020.102458.
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