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Abstract:We use high-frequency panel data on electricity consumption to study the
effectiveness of energy efficiency upgrades in K–12 schools in California. Using a
panel fixed effects approach, we find that these upgrades deliver between 12% and
86% of expected savings, depending on specification and treatment of outliers. Using
machine learning to inform our specification choice, we estimate a narrower range:
52%–98%, with a central estimate of 60%. These results imply that upgrades are per-
forming less well than ex ante predictions on average, although we can reject some of
the very low realization rates found in prior work.
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ment efforts. For example, worldwide proposed climate mitigation plans rely on energy
efficiency to deliver 42% of emissions reductions (International Energy Agency 2015).
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The appeal of energy efficiency investments is straightforward: they may pay for them-
selves by lowering future energy bills. At the same time, lower energy consumption re-
duces reliance on fossil fuel energy sources, providing the desired GHG reductions. A
number of public policies—including efficiency standards, utility-sponsored rebate pro-
grams, and information provision requirements—aim to encourage more investment in
energy efficiency.

Policy makers are likely drawn to energy efficiency because a number of analyses
point to substantial unexploited opportunities for cost-effective investments (McKinsey &
Company 2009; Tonn et al. 2014; Nadel andUngar 2019). Indeed, it is not uncommon
for analyses to project that the lifetime costs of these investments are negative. One
strand of the economics literature has attempted to explain why consumers might fail
to avail themselves of profitable investment opportunities (see, e.g., Allcott and Green-
stone 2012; Gillingham and Palmer 2014; Gerarden et al. 2017). Among other expla-
nations, economists have suggested the possibility of market failures and behavioral bi-
ases (Fowlie et al. 2018).

A second strand of literature seeks to better understand the real-world savings and
costs of energy efficiency investments when compared to engineering projections. There
are a variety of reasons why engineering estimates might overstate savings or understate
the costs consumers face.1 Economists have pointed out that accurately measuring the
savings from energy efficiency investments is difficult as it requires constructing a coun-
terfactual energy consumption path from which reductions caused by the efficiency in-
vestments can be measured (Joskow and Marron 1992). Recent studies use both exper-
imental (e.g., Allcott and Greenstone 2017; Fowlie et al. 2018) and quasi-experimental
(e.g., Davis et al. 2014; Levinson 2016; Myers 2018) approaches to developing this coun-
terfactual. These studies, all of which estimate the effectiveness of energy efficiency
upgrades in residential settings, find substantial underperformance, with upgrades deliver-
ing between 25% and 58% of ex ante expected savings.2

A more complete view of which energy efficiency opportunities are cost-effective re-
quires more evidence from a variety of settings. While 37% of electricity use in the
United States in 2014 was residential, over half is attributable to commercial and in-
dustrial uses (Energy Information Administration 2015). Despite the large role of
1. For example, engineering models do not take consumer behavior into account. If an en-
ergy efficiency upgrade lowers the effective price of energy services and consumers respond by
demanding more energy services, the energy efficiency upgrade will look less effective than the
engineering prediction—even if this prediction would have been correct in the absence of behav-
ior change. Furthermore, ex post evaluation is relatively uncommon in the energy efficiency in-
dustry, so there is limited feedback between real-world outcomes and engineering models
(Fowlie et al. 2018).

2. An interesting counterpoint to these estimates is Blonz (2019), who finds that refrigerator
replacements in Southern California delivered savings in line with engineering estimates when
these upgrades were implemented according to program rules.
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nonhousehold sectors in energy use, however, the existing literature is largely focused
on residential energy efficiency (Gerarden et al. 2017).3We extend this work into a non-
residential sector by estimating the impacts of energy efficiency upgrades in K–12 schools
in California from 2008 to 2014. We match electricity consumption data from public
K–12 schools in California to energy efficiency upgrade records and exploit temporal
and cross-sectional variation to estimate the causal effect of the energy efficiency invest-
ments on energy use, leveraging high-frequency electricity consumption data generated
from advanced metering infrastructure (“smart metering”).4

We estimate two empirical models. The first is a panel data model that uses a rich
set of fixed effects and controls to nonparametrically separate the causal effect of energy
efficiency upgrades from other confounding factors. We find evidence that our panel
fixed effects approach is sensitive to outliers and to specification. However, choosing
the “correct” set of controls is difficult as there are many possible candidate covariates,
especially once we allow for interactions between control variables and unit or time fixed
effects. For example, onemight want to allow flexible functions of temperature to impact
electricity consumption in a granular manner that is specific to each school. The richness
of the data makes it difficult for researchers to choose between a large set of plausible
regression models both from a conceptual and computational point of view.

To overcome these challenges, we estimate a second empirical model based on new
techniques in machine learning. We combine our high-frequency electricity consump-
tion data with machine learning methods in order to select among the set of possible
covariates in a disciplined and computationally feasible manner.5 In particular, we
use each individual school’s pre-treatment data to build a machine learning model of
only that school’s energy consumption. We use LASSO, as well as a set of alternative
algorithms, to flexibly build these prediction models while avoiding overfitting. We
then use each school’s model to forecast counterfactual energy consumption in the
post-treatment period. These models provide us with a prediction of what would have
happened in the absence of any energy efficiency investments in a flexible, data-driven
way, allowing us to control parsimoniously for school-specific heterogeneity while en-
abling systematic model selection. In our setting, this allows us to algorithmically
choose between over 12 million possible covariates in a disciplined, computationally
3. A notable exception is Ryan (2018), who studies energy audits in Indian manufacturing
firms and finds evidence of substantial rebound: treated firms use 9.5% more electricity.

4. Over 52% of US households had smart meters as of 2018 according to data from EIA
Form-861.

5. Machine learning methods are increasingly popular in economics and other social sciences.
They have been used to predict poverty and wealth (Blumenstock et al. 2015; Jean et al. 2016;
Engstrom et al. 2017), improve municipal efficiency (Glaeser et al. 2016), understand percep-
tions about urban safety (Naik et al. 2015), improve judicial decisions to reduce crime (Klein-
berg et al. 2017), examine heterogeneous treatments in electricity critical peak pricing (Prest
2020) and weatherization (Souza 2019), and more.
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feasible way. In order to account for common shocks, we then embed these school-by-
school counterfactuals in a panel fixed effects model to estimate causal effects.

The identifying assumptions for the standard panel fixed effects model and our ma-
chine learning augmented version are essentially the same.6 Conditional on a chosen set
of controls, treated schools would have continued on a parallel trajectory to untreated
schools in the absence of treatment. We provide evidence in support of these assump-
tions by demonstrating that treated and untreated schools do not exhibit differential
trends in school characteristics, and by showing that there is a trend break among treated
schools at the time of treatment. The key difference is that our machine learning frame-
work allows us to select a richer set of control variables in a systematic and computation-
ally tractable manner.

Using our machine learning method, we find that energy efficiency investments in-
stalled in California’s K–12 schools underperform relative to average ex ante engineer-
ing projections of expected savings, delivering approximately 60% of expected savings.
Comparing our machine learning approach to standard panel fixed effects approaches
yields two primary findings. First, we show that estimates from standard panel fixed
effects approaches are quite sensitive to specification, outliers, and the set of untreated
schools we include in our models, with estimated energy savings ranging from 12% to
86% of ex ante expectations. By contrast, our machine learning method yields estimates
that are substantially more stable across specifications and samples: we estimate savings
between 52% and 98% of ex ante expectations. In addition to enabling data-driven co-
variate choice, these results highlight another potential benefit of usingmachine learning.

We also explore the extent to which we are able to predict realization rates using
easily observable school and upgrade characteristics. We do not find statistically signif-
icant correlations between these observables and realization rates in this setting. With
more extensive data collection, larger samples, or in contexts where the signal-to-noise
ratio is stronger, policy makers may be able to make progress toward identifying schools
where upgrades are more effective.

The remainder of this paper proceeds by describing our empirical setting and data
(sec. 1). We then describe the baseline panel fixed effects methodology and present
realization rate estimates using these standard tools (sec. 2.1). Section 2.2 introduces
our machine learning methodology and presents the results. We compare approaches
in section 2.3. In section 3, we explore heterogeneity in realizations rates. Section 4
concludes.

1. CONTEXT AND DATA

Unlike most of the existing literature, which focuses on the residential setting, our pa-
per evaluates the effectiveness of energy efficiency upgrades in public buildings: K–12
schools. School buildings, which are not operated by profit-maximizing agents, may be
6. Varian (2016) provides an overview of causal inference targeted at scholars familiar with
machine learning.
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less likely to take advantage of cost-effective investments in energy efficiency, meaning
that targeted programs to encourage investment in energy efficiency may yield partic-
ularly high returns among these establishments. On the other hand, schools are open
fewer hours than many commercial buildings, so the returns may be lower.

We analyze schools that participated in Pacific Gas and Electric Company’s (PG&E’s)
energy efficiency programs. School districts identified opportunities for improvements
at their schools and then applied to PG&E for rebates to help cover the costs of qual-
ifying investments. In California, utility energy efficiency programs are funded by a
small additional charge on electricity and gas customer bills, which provides over $1 bil-
lion per year for programs across the residential, commercial and industrial sectors.

Energy efficiency retrofits for schools gained prominence in California with Propo-
sition 39, which voters passed in November 2012. The proposition closed a corporate
tax loophole and devoted half of the revenues to reducing the amount public schools
spend on energy, largely through energy efficiency retrofits. Over the first three fiscal
years of the program, the California legislature appropriated $1 billion to the program
(California Energy Commission, n.d.). This represents about one-third of what Cali-
fornia spent on all utility-funded energy efficiency programs (ranging from low-interest
financing to light bulb subsidies to complex industrial programs) and about 5% of what
utilities nationwide spent on energy efficiency over the same time period (Barbose et al.
2013). The upgrades we study in this paper largely predate the investments financed
through Proposition 39, but are similar to the later projects, making our results relevant
to expected energy savings from this large public program.

Methodologically, schools provide a convenient laboratory in which to isolate the
impacts of energy efficiency. School buildings are all engaged in relatively similar activ-
ities, are subject to the same wide-ranging trends in education, and are clustered within
distinct neighborhoods and towns. Other commercial buildings, by contrast, can house
anything from an energy-intensive data center that operates around the clock to a
church that operates very few hours per week. Finally, given the public nature of schools,
we are able to assemble relatively detailed data on school characteristics and recent
investments.

Most of the existing empirical work on energy efficiency focuses on the residential
sector. There is little existing work on energy efficiency in commercial buildings. Kahn
et al. (2014) provide descriptive evidence on differences in energy consumption across
one utility’s commercial buildings as a function of various observables, including incen-
tives embedded in the occupants’ leases, age, and other physical attributes of the build-
ings. In other work, Kok and coauthors analyze the financial returns to energy efficiency
attributes, thoughmany of the attributes were part of the building’s original construction
and not part of deliberate retrofits, which are the focus of our work (Kok and Jennen
2012; Eichholtz et al. 2013).

There is also a large gray literature evaluating energy efficiency programs, mostly
through regulatory proceedings. Recent evaluations of energy efficiency programs
for commercial customers, such as schools, in California find that actual savings are
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around 50% of projected savings for many efficiency investments (Itron 2015) and
closer to 100% for lighting projects (Itron 2017). The methodologies in these studies
combine process evaluation (e.g., verifying the number of light bulbs that were actually
replaced) with impact evaluation, although the latter do not use meter-level data and
instead rely on site visits by engineers to improve the inputs to engineering simulations.
Recent studies explore the advantages of automating energy efficiency evaluations ex-
ploiting the richness of smart meter data and highlight the potential for the use of ma-
chine learning in this area (Granderson et al. 2017). In this paper, we implement one of
the first quasi-experimental evaluations of energy efficiency upgrades outside the resi-
dential sector. Our results indicate that energy efficiency upgrades performed better in
this context than in the residential settings of prior work, but we can still reject 100%
realization rates using our preferred approach.7

1.1. Data Sources

We use data from several sources. In particular, we combine high-frequency electricity
consumption and account information with data on energy efficiency upgrades, school
characteristics, community demographics, and weather.

1.1.1. Smart Meter Data

We obtain hourly interval electricity metering data for the universe of public K–12
schools in Northern California served by PG&E. The data begin in January 2008,
or the first month after the school’s smart meter was installed, whichever comes later.8

Twenty percent of the schools in the sample appear in 2008; the median year schools
enter the sample is 2011. The data series runs through 2014.

In general, PG&E’s databases link meters to customers for billing purposes. For
schools, this creates a unique challenge: in general, school bills are paid by the district,
7. The results remain on the upper end of realization rates in the literature (with a few ex-
ceptions finding support for full realization rates), and it is plausible that these relatively higher
realization rates are driven by differences between the K–12 schools of our study and the res-
idential settings of prior work. It is possible that schools are less subject to rebound than house-
holds. Schools are likely to be limited in their ability to change their usage, including facing reg-
ulations requiring them to provide adequate environmental conditions for education. In
addition, school districts, rather than individual schools, receive and are responsible for paying
electricity bills, which could make schools less sensitive to price than households. On the other
hand, results in schools may differ from other commercial settings. Schools are not profit max-
imizing. Deferred maintenance and rebound effects, for instance, may lead energy efficiency up-
grades in schools to perform less well than in other commercial contexts.

8. The raw PG&E interval data recorded consumption information every 15 minutes; we
collapse these data to the hourly level because 15-minute-level intervals are often missing. Sim-
ilarly, we interpolate consumption at a given hour if consumption at no more than two consec-
utive hours is missing.
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rather than individual school. In order to estimate the effect of energy efficiency invest-
ments on electricity consumption, we required a concordance between meters and
schools. We developed a meter matching process in collaboration with PG&E. The
final algorithm that was used to match meters to schools was implemented as follows:
first, PG&E retrieved all meters associated with “education” customers by North Amer-
ican Industry Classification System code. Next, they used GPS coordinates attached to
each meter to match meters from this universe to school sites, using school location data
from the California Department of Education.9 This results in a good but imperfect match
between meters and schools: in some cases, multiple school sites match to one or more
meters. This can often be resolved by hand, and was wherever possible, but several “clus-
ters” remain. To avoid potential concerns about these clusters, we use only school-meter
matches that did not need to be aggregated.10 Our final sample includes 1,931 schools.

1.1.2. Energy Efficiency Upgrades

The PG&E data include energy efficiency upgrades for districts that applied for utility
rebates. The upgrades in our database are likely to comprise a majority of energy ef-
ficiency upgrades undertaken by schools, which we discuss in section 1.4.11 Between
January 2008 and December 2014, 2,484 upgrades occurred at 911 schools. For each
energy efficiency installation, our data include the measure code, the measure descrip-
tion,12 a technology family (e.g., “HVAC,” “lighting’’), number of units installed, in-
stallation date, expected lifetime of the project, the engineering-estimate of expected
annual kilowatt-hour (kWh) savings, the incremental measure cost, and the PG&E
upgrade incentive received by the school.13 Expected savings are determined through
a standardized database, the Database of Energy Efficient Resources (DEER).14
9. To ensure the quality of the match, we dropped schools for which energy consumption
seemed implausibly low as a precaution (less than 1.5 kWh per hour). When we looked at these
matches by hand, we found that such meters were not necessarily mismatched, but they were
matched to nonstandard educational centers with extremely low consumption, such as centers
for adult learning with limited opening hours. We also checked for match quality among high-
consuming outliers but did not find evidence of imperfect matches.

10. In early work, we found that results including clustered meters were very similar.
11. Anecdotally, PG&E reports making concerted marketing efforts to reach out to districts

to induce them to make these investments; districts often lack funds to devote to energy effi-
ciency upgrades in the absence of such rebates.

12. One example of a lighting measure description from our data: “PREMIUM T-8/T-5
28W ELEC BALLAST REPLACE T12 40W MAGN BALLAST-4 FT 2 LAMP.”

13. We have opted not to use the cost data as we were unable to obtain a consistent defi-
nition of the variables related to costs.

14. DEER is based on a Department of Energy (DOE) model that produces common energy
savings estimates by upgrade type. Expected savings in DEER are based on a set of baseline model
assumptions on pre-upgrade building characteristics and a measure case, designed to predict
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Before measures enter this database, they undergo extensive review by the California
Public Utilities Commission.15 Many schools undertake multiple upgrades, either
within or across categories.

Figure 1 displays summary statistics for the energy efficiency upgrades in our sam-
ple. HVAC and lighting upgrades make up the bulk of the installed upgrades, both by
number and by expected savings. The mean expected savings per intervention is
15,321 kWh per year, with a median of 3,344 kWh per year. The mean expected sav-
ings from HVAC (lighting) interventions is 10,290 kWh (23,673) per year, with a
Figure 1. Energy efficiency upgrades. This figure shows the timing of upgrades in our sam-
ple (A), the total expected savings by category of upgrade (B), a box plot of savings by category
(C), and expected savings as a share of annual consumption (D). Color version available as an
online enhancement.
15. Utilities have limited scope to adjust the savings estimates, which must be externally val-
idated, and face dynamic incentives to avoid inflating savings estimates. Since energy efficiency
upgrades are ultimately financed by ratepayers, proposed measures are the subject of consider-
able scrutiny by the Public Utilities Commission.

energy use with a particular energy efficiency measure installed. While some measures used by
PG&E are tailored to K–12 schools, the majority of measures in our data use generic commer-
cial buildings as the base case. Expected savings in DEER do vary with building vintage and cli-
mate zones in principle, though we see little variation by climate zone in our data. Expected sav-
ings are independent of previously installed upgrades and scale linearly with number of units
installed.
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median of 1,640 (10,742) kWh per year. We attempt to normalize these savings per
installed unit (e.g., one light bulb), although there is substantial heterogeneity within
these categories. We find that median expected savings per unit installed for HVAC
(lighting) are in the order of approximately 77 (88) kWh per year.16 For the median
school, expected savings are less than 6% of annual consumption. However, in some
schools, expected savings appear to be unreasonably high.17

1.1.3. Other Data

We also obtain school and school-by-year information from the California Depart-
ment of Education on academic performance, number of students, the demographic
composition of each school’s students, the type of school (i.e., elementary, middle
school, high school, or other) and location. We matched schools and school districts
to census blocks in order to incorporate additional neighborhood demographic infor-
mation, such as racial composition and income. Finally, we obtain information on
whether school district voters had approved facilities bonds in the 2–5 years before
retrofits began at treated schools.18

We download hourly temperature data from 2008 to 2014 from over 4,500 weather
stations across California from MesoWest, a weather data aggregation project hosted
by the University of Utah.19 We match school GPS coordinates provided by the De-
partment of Education with weather station locations from MesoWest to pair each
school with its closest weather station to create a school-specific hourly temperature
record.

1.2. Summary Statistics

Table 1 displays summary statistics for the data described above for our entire sample
period, for schools with and without energy efficiency projects. We construct the main
variables for each school as the average during the whole sample period. Of the 1,931
schools in the sample, 910 undertook at least one energy efficiency upgrade. There are
1,021 “untreated” schools that did not install any energy efficiency upgrades during
16. For lighting, this is equivalent to an 8-watt saving per hour for a bulb running 8 hours
per day all year. For HVAC, this is a relatively small number, reflective the fact that many of the
HVAC measures are limited to tune-ups to increase efficiency.

17. These outliers are most likely due to measurement error either in the match between
savings and school electricity consumption or in the expected savings themselves. We show that
our machine learning approach below is robust to removing outliers in expected savings.

18. Bond data are from EdSource (www.edsource.org), a nonprofit education journalism
website.

19. We performed our own sample cleaning procedure on the data from these stations,
dropping observations with unreasonably large fluctuations in temperature and dropping sta-
tions with more than 10% missing or bad observations. The raw data are available with a free
login from http://mesowest.utah.edu/.



Table 1. Average Characteristics of Schools in the Sample

Characteristic Untreated Treated T – U

Hourly energy use (kWh) 33.3 57.4 24.1
(34.1) (72.7) [<.01]

First year in sample 2012 2010 –2
(1.7) (1.8) [<.01]

Total enrollment 544 727 184
(365) (484) [<.01]

Academic performance index (200–1,000) 789 794 5
(99) (89) [.28]

Bond passed, last 2 years (0/1) .3 .2 –.0
(.4) (.4) [.24]

Bond passed, last 5 years (0/1) .4 .4 –.0
(.5) (.5) [.69]

High school graduates (%) 23.4 23.3 –.1
(12.3) (11.7) [.87]

College graduates (%) 20.1 20.3 .2
(12.3) (12.0) [.76]

Single mothers (%) 20.4 19.3 –1.1
(19.2) (18.4) [.22]

African American (%) 5.8 6.1 .4
(9.4) (8.0) [.37]

Asian (%) 9.3 11.6 2.4
(13.4) (16.1) [<.01]

Hispanic (%) 41.9 43.5 1.6
(28.4) (26.8) [.21]

White (%) 34.6 30.8 –3.8
(26.8) (24.5) [<.01]

Average temperature (°F) 60.0 60.8 .8
(4.1) (3.5) [<.01]

Coastal (0/1) .3 .2 –.1
(.5) (.4) [<.01]

Latitude 37.7 37.5 –.2
(1.1) (1.0) [<.01]

Longitude –121.6 –121.2 .4
(1.0) (1.1) [<.01]

No. of schools 1,021 910
Note. This table displays average characteristics of the treated and untreated schools in our sample for
the entirety of our sample period. Standard deviations are in parentheses, with p-values of the difference
between treated and untreated schools in brackets. “Untreated” schools underwent no energy efficiency up-
grades for the duration of our sample. The “T – U” column compares treated schools to the schools that
installed zero upgrades. Each row is a separate calculation, and is not conditional on the other variables re-
ported here.
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our sample period. Our main variable of interest is hourly electricity consumption. We
observe electricity consumption data for the average school for a 3-year period. For
schools that are treated, expected energy savings are almost 30,000 kWh, or approx-
imately 5% of average annual electricity consumption.20

Table 1 highlights measurable differences between treated and untreated schools.
Treated schools consume substantially more electricity, appear in our sample earlier,
are larger, and tend to be located to the southeast of untreated schools.

1.3. Trends in School Characteristics

Because schools are different on a range of observable characteristics, and because
these indicators may be correlated with electricity usage, it is important that we con-
sider selection into treatment as a possible threat to econometric identification in this
setting. One reassuring feature, shown in figure C.1 (figs. A.1, A.2, C.1–C.3 are avail-
able online), is that, in spite of the measurable differences across schools, there is sub-
stantial geographical overlap between them.

Because we have repeated observations for each school over time, we will employ a
panel fixed effects approach, meaning that level differences alone do not constitute
threats to identification. For our results to be biased, there must be time-varying dif-
ferences between treated and untreated schools that correlate with the timing of en-
ergy efficiency upgrades. In order to examine the extent to which this is occurring, we
examine patterns in five key school characteristics across treated and untreated schools
over time using an event study specification. In particular, we examine the number of
enrolled students, number of staff members, and the percentage of students perform-
ing “proficient” or better—the state standard—on California’s Standardized Testing
and Reporting (STAR) math and English/language arts exams, and energy consump-
tion. Our estimating equation is:

Yit 5 o
4

y5–2
βy1½Year to upgrade 5 y�it 1 ai 1 gt 1 eit, (1)

where Yit is our outcome of interest for school i in year t, 1[Year to upgrade5 y]it is an
indicator defining “event time,” such that y 5 0 is the year of the energy efficiency up-
grade, y – 2 is 2 years prior to the upgrade, and y 1 4 is 4 years after the upgrade, and
so forth ai are school fixed effects, gt are year fixed effects, and εit is an error term,
which we cluster at the school level.21 Figure 2 displays the results of this exercise.

Across the four demographic variables, we see that treated and untreated schools
are behaving similarly before and after energy efficiency upgrades. The relatively flat
20. We do not summarize expected savings in table 1, as all untreated schools have expected
savings of zero.

21. Because we have richer data on electricity consumption, we include a school-by-hour-of-
day fixed effect rather than a school fixed effect in this final regression.



Figure 2. School characteristics before and after treatment. This figure shows point esti-
mates and 95% confidence intervals from event study regressions of school demographics and
test scores before and after an energy efficiency upgrade using a balanced panel of schools to
facilitate interpretation. We normalize time relative to the year each school undertook its first
upgrade. Standard errors are clustered by school. The top left panel displays results for number
of students enrolled in school; the top right panel shows results for number of staff members;
the middle left panel shows results for the percentage of students scoring proficient or better on
California’s Standardized Testing and Reporting (STAR) English and Language Arts (ELA)
tests; and the middle right panel shows results for the percentage of students scoring proficient
(the state standard) or better on California’s STAR math tests;. The bottom panel shows en-
ergy consumption. Color version available as an online enhancement.
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pre- and post-treatment trends are evidence in favor of our identifying assumption that
treated and untreated schools were and would have remained on parallel trends in the
absence of energy efficiency upgrades. In particular, the results on the number of stu-
dents and number of staff suggest that treated schools did not grow or shrink substan-
tially at the same time as they installed energy efficiency upgrades, and the test score
results provide evidence that schools’ instructional quality did not change dramatically
around energy efficiency upgrades. We can rule out even small changes in all four var-
iables; we find precisely estimated null results.

The final panel of figure 2 provides suggestive evidence that treated and untreated
schools had similar trends in energy consumption prior to energy efficiency upgrades.
Furthermore, we find that these upgrades are associated with a marked decline in en-
ergy consumption at treated schools. This panel lends further support to our assump-
tion that treated and untreated schools would have remained on similar trajectories in
the absence of energy efficiency upgrades, and suggests that energy efficiency upgrades
caused a substantial reduction in energy use.

1.4. Potential for Unobserved Energy Efficiency Measures

In our data, we can only measure energy efficiency upgrades that happened through a
subsidized program. If control schools are also implementing energy efficiency mea-
sures, the treatment effect might be attenuated. Contrarily, if treated schools are com-
plementing the subsidized upgrades with unsubsidized purchases, our treatment effects
will be overestimated.

Whereas this can be a source of bias, we have performed background research into
the institutional details of energy efficiency upgrades in California schools to assess the
relevance of this threat to identification, including speaking to officials involved in
California’s energy efficiency sector. We find evidence that energy efficiency upgrades
are often prohibitively costly for schools without outside financial assistance (Gordon
and Barba 2012; Borgeson and Zimring 2013). Indeed, one rationale for passing Prop-
osition 39 in the first place was that schools were reporting being unable to invest in
energy efficiency upgrades for lack of funds.

During our sample period, prior to Proposition 39, California schools had twomain
ways of financing energy efficiency upgrades: energy efficiency subsidies/utility incen-
tives and bonds (Borgeson and Zimring 2013), which have historically been concen-
trated in wealthy school districts. The primary sources of energy efficiency subsidies
were the utility incentives that we study in this paper (California Energy Commission
2014; North Carolina Clean Energy Technology Center 2020). Our empirical exercise
is on these subsidies and captures the universe of subsidized energy efficiency upgrades
undertaken by schools served by PG&E during our sample.

The other potential method used to raise money for energy efficiency upgrades is
passing local bond measures. We use data on the universe of local bond measures
passed in California during our sample period to understand whether bond-funded
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but unobservable energy efficiency upgrades are biasing our results. We estimate the
effect of bond passage on energy consumption in schools that did not undergo subsi-
dized energy efficiency upgrades, to test whether these bonds indeed led to energy ef-
ficiency upgrades which we do not observe in appendix table C.1 (tables B.1, C.1–C.18 are
available online). We find that schools that passed bond measures appear to be consum-
ing slightly more energy, with the point estimate being relatively small and insignificant.

2. EMPIRICAL STRATEGY AND RESULTS

In this section, we describe our empirical approach and present results.We begin with a
standard panel fixed effects strategy. Despite including a rich set of fixed effects in all
specifications, we demonstrate that this approach is highly sensitive to both specifica-
tion and outliers. We proceed by implementing a machine learning methodology,
wherein we generate school-specific models of electricity consumption to construct
counterfactual electricity use in the absence of energy efficiency upgrades. We demon-
strate that this method is substantially less sensitive to specification and sample restric-
tions than our regression analysis and that it enables us to select among the millions of
possible covariates in a systematic way.

2.1. Panel Fixed Effects Approach

2.1.1. Methodology

The first step of our empirical analysis is to estimate the causal impact of energy effi-
ciency upgrades on electricity consumption. In an ideal experiment, we would randomly
assign upgrades to some schools and not to others. In the absence of such an experi-
ment, we begin by turning to standard quasi-experimental methods. We are interested
in estimating the following equation:

Yith 5 βDit 1 aith 1 eith, (2)

where Yith is energy consumption in kWh at school i on date t during hour-of-day h.
Our treatment indicator, Dit, is a dummy indicating that school i has undertaken at
least one energy efficiency upgrade by date t.22 The coefficient of interest, β, can be in-
terpreted as the average savings in kWh/hour at a treated school. The term aith repre-
sents a variety of possible fixed effects approaches. Because of the richness of our data,
we are able to include many multidimensional fixed effects, which nonparametrically
control for observable and unobservable characteristics that vary across schools and
22. Though schools can and do undertake multiple upgrades, we use a binary treatment in-
dicator here due to concern about mismeasurement of treatment dates. When we instead define
Dit as the cumulative number of upgrades undertaken by school i by time t, we find smaller re-
alization rates, further supporting our conclusion that energy efficiency upgrades deliver less
than the expected savings. Discussions with the utility confirmed that there is substantial het-
erogeneity on how accurately the dates are recorded.
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time periods. Finally, εith is an error term, which we cluster at the school level to account
for arbitrary within-school correlations.23

We present results from several specifications with increasingly stringent controls.
In our most parsimonious specification, we control for school-by-hour-of-day fixed
effects, accounting for hour-specific time-invariant characteristics at each school.
Our preferred specification includes school-by-hour-by-month-of-year fixed effects, to
control for differential patterns of electricity consumption across schools, and month-
of-sample fixed effects, to control for common shocks or time trends in energy consump-
tion. As a result, our econometric identification comes from within-school-by-hour-
month-of-year and within-month-of-sample differences between treated and untreated
schools.

Realization Rates. To assess the performance of these energy efficiency measures, we
compare our estimates to average ex ante estimates of expected savings. We follow the
existing energy efficiency literature in calculating realization rates.24 Specifically, we
calculate the realization rate as β̂ divided by the average expected savings for upgrades
in our sample. To ensure that the average savings are properly weighted to match the
relevant regression sample, we compute these average savings by regressing expected
savings for each school at a given time t (equal to average expected savings for treated
schools during the post-period, and zero otherwise) on the treatment time variable and
the same set of controls and fixed effects as its corresponding regression specification. If
our ex post estimate of average realized savings matches the ex ante engineering esti-
mate, we will estimate a realization rate of one. Realization rates below (above) one im-
ply that realized savings are lower (higher) than expected savings.

Additionally, we also consider the implied realization rates that result from a mod-
ified model:

Yith 5 –β�Si × Dit 1 aith 1 eith, (3)

where �Si are the expected average savings at school i that undergoes an energy savings
intervention (and zero otherwise). A coefficient of one implies that expected savings
explain the post-treatment gap between schools with energy efficiency upgrades and
without them. Note that the realization rate estimated with this method has a different
23. Both here and in the machine learning approach described below, to speed computation
time, we collapse the data to the school-by-month-of-sample-by-hour-of-day level to run the
regressions. This collapse enables us to more easily include month-of-sample and school-
hour-specific fixed effects while being able to consider a wide range of robustness checks. After
collapsing the data, we weight our regressions such that we recover results that are equivalent to
our estimates on the disaggregated data. The main results using the uncollapsed data are virtu-
ally the same and available in appendix table C.2.

24. Davis et al. (2014), Levinson (2016), Allcott and Greenstone (2017), Kotchen (2017),
Fowlie et al. (2018), and Novan and Smith (2018) all use this method.
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interpretation.Whereas our first approach (the method used throughout the literature)
yields the average realization rate across the program, our second approach estimates the
average school-specific realization rate. Because the second approach leverages school-
specific savings estimates, it is more demanding. For example, to the extent that expected
savings contain measurement error in a classical sense, which would be very natural as
they are a prediction of future savings, one would expect estimates from the second ap-
proach to be attenuated. Because these approaches estimate different objects, we do not
necessarily expect the resulting realization rate estimates to be the same.25

2.1.2. Results

Panel A in table 2 reports results from estimating equation (2) using five different sets
of fixed effects. We find that energy efficiency upgrades resulted in energy consump-
tion reductions of between 1.3 and 3.5 kWh/hour. These results are highly sensitive
to the set of fixed effects included in the regression. Using our preferred specification,
column 5 in table 2, which includes school-by-hour-by-month-of-year and month-of-
sample fixed effects, we find that energy efficiency upgrades caused a 1.81 kWh/hour
reduction in energy consumption at treated schools. In column 6, we also control for
temperature, and find a 1.60 kWh/hour reduction in energy consumption, and a re-
alization rate of 0.39. These results are all precisely estimated; all energy savings esti-
mates are statistically significant at the 1% level.26

Panel B in table 2 reports results from estimating equation (3) using the same sets
of fixed effects. The implied realization rate is similar using this approach, with esti-
mates between 0.41 and 0.59.

Using this panel fixed effects approach, we find evidence that energy efficiency up-
grades reduced school electricity consumption. However, these upgrades appear to
underdeliver relative to ex ante expectations. In all specifications, we find realization
rates below one: our estimated realization rates range from 0.31 to 0.81. This suggests
that energy savings in schools are not as large as expected. In our most comprehensive
specification, which includes a temperature control, the realization rate is 0.39, imply-
ing that only 39% of the expected savings are realized.

2.1.3. Panel Fixed Effects Robustness

Trimming. We subject our panel fixed effects approach to a number of standard ro-
bustness checks. We begin by examining the sensitivity of our estimates to outliers.
This is particularly important in our context, because we run our main specifications
25. Heterogeneity in treatment effects across schools is another reason that will cause these
estimates to differ, e.g., Houde and Myers (2019).

26. In appendix table C.3, we present standard errors using two-way clustering on school and
month of sample, allowing for arbitrary dependence within schools and across schools within a
time period. The results remain highly statistically significant using these alternative approaches.
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in levels to facilitate the computation of realization rates. Table 3 repeats the estimates
from table 2 with three different approaches to removing outliers. In panel A, we trim
observations below the 1st or above the 99th percentile of energy consumption. Doing so
reduces the point estimates dramatically.We now estimate savings between 0.47 kWh/
hour and 2.47 kWh/hour. This trimming also has substantial impacts on our realization
rate estimates, which now range from 0.12 to 0.59.

In panel B, we instead trim schools below the 1st and above the 99th percentile in
terms of expected savings. We implement this trim because expected savings has an
extremely skewed distribution in our sample.27 We find that the results are less sen-
sitive to this trim than the trim in panel A; we now estimate point estimates between
1.02 kWh/hour and 3.25 kWh/hour, and realization rates between 0.29 and 0.86.

In panel C, we implement both trims together, and the results are similar to those
in panel A. We again find much lower point estimates (ranging from 0.49 kWh/hour
to 2.43 kWh/hour) and realization rates (ranging from 0.14 to 0.65) than in the full
sample.28

Overall, the panel fixed effects estimates are sensitive to both specification and to
outliers in the sample. This is concerning from a policy perspective; realization rates
between 0.31 and 0.81 have substantially different implications than rates between
0.14 and 0.65, and it is also cause for concern about the performance of the panel fixed
effects estimator in this context. Controlling for temperature in specification (6) helps
mitigate the effects of trimming somewhat, but the results remain sensitive to outliers,
with estimated realization rates moving between 0.39 with no trimming to 0.23 when
trimming outlier observations and upgrades.

Measurement Error. A concern in this setting is mismeasured treatment dates. We
use two approaches to address this. First, we run “donut” specifications where we drop
months immediately before and after treatment to account for possible mismeasure-
ment of treatment dates. We present these results in appendix tables C.5 and C.6. Our
estimated average program realization rates rise somewhat, from 0.39 with the full sam-
ple to 0.46 dropping 3 months before and after, using our preferred specification; the
school-specific realization rates rise from 0.45 to 0.50, suggesting that there may be
some mismeasurement in treatment dates.29 Second, our treatment variable is a binary
27. The median project was expected to save 16,663 kWh, while the average project was
expected to save 46,050 kWh. We believe some of this to be measurement error: 5% of schools
in the sample which are expected to reduce their energy consumption by 50% through energy
efficiency upgrades, which seems unrealistic.

28. Appendix table C.4 presents the analogous results for the school-specific realization rate
calculations.

29. One important caveat to these donut results is that we have a relatively short panel for
many schools, so we are losing some schools and inducing selection as we drop data, as shown by
the decreasing number of observations in the donut tables, e.g., comparing panel A (1 month
donut) to panel C (3 months donut).
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indicator equal to 1 after a school undergoes its first energy efficiency upgrade, rather
than a continuous timing measure, since the time of implementation is measured with
substantial error. Appendix table C.7 presents the results using a continuous timing var-
iable. As expected, these effects are quite attenuated: in our main specification, we esti-
mate a realization rate of 0.16.

The results presented above come from a fairly standard parsimonious specifica-
tion. It bears pointing out that there are many possible variants on the panel fixed ef-
fects design (see, e.g., the matching approach from Ferraro and Miranda [2017] and
Cicala [2015] or the Abadie et al. [2010] synthetic control method).30 Given the rich-
ness of our data, we also have a great deal of flexibility in our choice of control vari-
ables, fixed effects, and functional form. In order to add additional controls in an al-
gorithmic fashion, we now turn to a machine learning approach.

2.2. Machine Learning Approach

Even with a large set of high-dimensional fixed effects, the standard panel approach
performs poorly on basic robustness tests and is extremely sensitive to specification.
A natural next step would be to add additional controls. However, given the size of
the data set, a researcher interested in capturing heterogeneity could interact several
variables with school and hour-of-day, generating millions of candidate interactions.
This makes the process of model selection computationally expensive and ad hoc.
In order to address some of these issues more systematically, we use a machine learn-
ing approach that leverages the richness of the data.31

2.2.1. Methodology Overview

Our machine learning estimator proceeds in two steps. In a first step, we use machine
learning tools to create unit-specific models of an outcome of interest. Our approach
builds on a standard regression model, of the form:

Yit 5 βDit 1 giXit 1 aith 1 eit:
30. As one variant on our main approach, we conduct a limited nearest neighbor matching
exercise, in which we use observable characteristics of treated schools to find similar untreated
schools. Appendix table C.8 displays the results, using three different candidate control groups:
all untreated schools, schools in the same district as the treated school only, and schools in other
districts only. These results are highly sensitive to specification and the selected control group.

31. Machine learning is particularly well suited to constructing counterfactuals, since the
goal of building the counterfactual is not to isolate the effect of any particular variable, but rather
to generate a good overall out-of-sample prediction (Abadie and Kasy 2019). These methods also
enable researchers to allow for a substantially wider covariate space than would be feasible with
trial and error.



Machine Learning from Schools Burlig et al. 1201
Our estimation differs from this traditional approach in two ways. First, we use ma-
chine learning (rather than researcher choice) to choose the set of Xit variables.

32

Second, we are informing gi using pre-treatment observations only.33 This allows us
to separate the choice of school specific coefficients, gi, from the estimation of the treat-
ment effect, β, which in our context is computationally appealing.34

We use these models to create (fully out-of-sample) predictions of our outcome of
interest in the post-treatment period. The difference between the actual outcome and
the prediction (i.e., the prediction error) already give us a rough idea of a treatment
effect.35 However, it does not properly control for time trends and other confounding
factors that would be accounted for in a differences-in-differences setting.36

To address this concern, our regression specification in the second step is analogous
to our panel fixed effects model, described in equation (2), but we now use the pre-
diction error from the first step as the dependent variable:

Yith – Ŷith 5 βDit 1 aith 1 gpost-trainith 1 eith, (4)

where aith and εith are defined as in equation (2), Ŷith is the prediction in kWh from
step 1, and post-trainith is a dummy, equal to one during the out-of-sample prediction
32. Machine learning methods have become increasingly popular in economics. Athey (2017)
and Mullainathan and Spiess (2017) provide useful overviews. Other papers in this literature
include McCaffrey et al. (2004), who propose a machine learning based propensity score match-
ingmethod;Wyss et al. (2014), who force covariate “balance” by directly including balancing con-
straints in the machine learning algorithm used to predict selection into treatment; and Belloni
et al. (2014) and Chernozhukov et al. (2018), who propose a “double machine learning” ap-
proach, using machine learning to both predict selection into treatment and to predict an out-
come, using both the covariates that predict treatment assignment and the outcome in the final
step.

33. We take a similar approach to that proposed Varian (2016) to use pre-treatment data
and machine learning to forecast a post-treatment counterfactual. Our approach is also similar
in spirit to Athey et al. (2017), in which the authors propose a matrix completion method for
estimating counterfactuals in panel data. Souza (2019) also uses a similar approach to our first
step, in the context of the Weatherization Assistance Program, and highlights some of the ap-
pealing features of the approach to examine heterogeneity and treatment effects, as well as ro-
bustness to concerns about two-way fixed effects estimation raised in Borusyak and Jaravel
(2018) and Goodman-Bacon (2019).

34. By using only pre-treatment data, our estimator is consistent but not particularly efficient.
In sec. 2.2.4, we consider an alternative double machine learning procedure (Chernozhukov et al.
2018) and find very similar results, both in point estimates and standard errors.

35. Figure A.1 provides a graphical intuition of this raw comparison.
36. Appendix A (apps. A–C are available online) uses the machine learning predictions in

the first step to construct treatment effects in a variety of ways, and shows how our results vary
depending on what control group and time periods we include in the analysis. In contrast with
step 2, these estimators do not flexibly control for month of sample or trends.
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period.37 We include this dummy to account for possible bias in the out-of-sample
predictions, by recentering prediction errors in the untreated schools around zero.38

We cluster our standard errors at the school level.39 This combination of machine
learning methods with panel fixed effects approaches enables us to control for confound-
ing trends.

As in the regression approach, we also estimate the complementary regression

Yith – Ŷith 5 –β�SiDit 1 aith 1 gpost-trainith 1 eith, (5)

in which we estimate the average school-specific realization rate.
Identification. As with the standard panel fixed effects approach, we assume that,

conditional on control variables, energy consumption at treated and untreated schools
would have been trending similarly in the absence of treatment. In this specification,
we require treated and untreated schools to be trending similarly in prediction errors,
rather than in energy consumption. This is analogous to having included a much richer
set of control variables on the right-hand side of our regression. In a sense, the machine
learning methodology enables us to run a much more flexible model in a parsimonious,
computationally tractable, and systematic way.

It is important to note that our machine learning approach—just like the panel fixed
effects approach—is not immune from bias stemming from energy consumption
changes that coincide directly with the subsidized energy efficiency upgrades. If a school
undertakes additional energy-saving behaviors or unsubsidized upgrades at the same
time as an energy efficiency upgrade in our sample, we will overestimate energy savings
37. As in the panel approach, we run these regressions using month-hour collapsed data,
given that there is limited value in keeping the disaggregated hourly data. Appendix table C.10
shows that the results are essentially the same when using the uncollapsed hourly data.

38. As shown in panel D of fig. 3, these prediction errors are centered around zero in our
application, so in practice this has a minimal impact on the results. However, this correction
could be important in other settings.

39. These standard errors do not account for prediction errors from the first step. To our
knowledge, there is no guidance from the econometrics literature on doing proper inference in
this panel machine learning estimator, so we present an alternative bootstrap approach in ap-
pendix table C.12. We begin by sampling weeks of sample with replacement for each school
independently. We then feed these bootstrapped data into the school-specific LASSO and com-
pute 20 alternative prediction models per school, depending on the bootstrap sample. Finally,
we sample these bootstrapped school predictions with replacement before running our ultimate
regressions (to produce the block-bootstrap analogue of clustering by school). We use the stan-
dard deviation of the bootstrapped treatment effects as our bootstrapped standard errors. These
standard errors are quantitatively similar to our conventional clustered standard errors. Because
the bootstrap standard errors are very similar to the clustered ones, and because the bootstrap
procedure is significantly more computationally intensive than clustering, we use the clustered
standard errors throughout the remainder of the text.
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and the resulting realization rates will be overestimated.40 Any remaining positive se-
lection into treatment, for instance, based on the expected size of the treatment effect,
will bias our estimates away from zero, leading us to estimate energy efficiency savings
and realization rates that are more favorable. For a confounder to bias our results to-
ward zero, a school would have to increase energy use at the same time as our up-
grades.41 We continue by providing a more thorough discussion of our machine learn-
ing methodology and describing the results.

2.2.2. Step 1: Predicting Counterfactuals

In the first step, we use machine learning to construct school-by-hour-of-day specific
prediction models. For treated schools, we define the pre-treatment period as the period
before any intervention occurs. For untreated schools, we randomly assign a “treatment
date,”which we use to define the “pre-treatment” period.42We train these models using
pre-treatment data only, as described above.43

There aremany possible supervisedmachine learningmethods that researchers could
use in this step. In our baseline approach, we use the least absolute shrinkage and selec-
tion operator (LASSO), a form of regularized regression, to generate a model of energy
consumption at each school.44We allow the LASSO to search over a large set of poten-
tial covariates, including the day of the week, a holiday dummy, a month dummy, a tem-
perature spline, the maximum and minimum temperature for the day, and interactions
40. As discussed in sec. 1.4, unsubsidized upgrades are not likely in our context.
41. As discussed in sec. 1.3, we show in fig. 2 that school size, number of staff, and test scores

do not change dramatically around the time of upgrade. This does not rule out the possibility of
dramatic changes in energy usage that were coincident with energy efficiency upgrades, but it
does appear unlikely that major schooling changes are driving our results.

42. We randomly assign this date between the 20th and 80th percentile of in-sample calen-
dar dates in order to have a more balanced number of observations in the pre- and post-sample,
similar to that in the treated schools.

43. As an example, suppose that we observe an untreated school that we observe between
2009 and 2013. We randomly select a cutoff date for this particular school, e.g., March 3, 2011,
and only use data prior to this cutoff date when generating our prediction model. For a treated
school with a treatment date of July 16, 2012, we use only data prior to this date to generate the
prediction models.

44. We also consider variants on the LASSO and two random forest approaches, as well as
alternative tuning parameters. We use the correlation between the predicted and actual energy
consumption for untreated schools in the post-training period as an out-of-sample check on the
performance of these different models. Appendix table C.9 displays the results of this exercise,
showing the distribution of correlations between data and predictions across these six methods.
Our chosen method, including basic variables and untreated schools, and using glmnet’s default
tuning parameter, performs slightly better than the other options. We also explore results using
these different models in fig. C.2, which shows that hour-specific treatment effects are robust to
the choice of method.
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between these variables. Because we are estimating school-hour-specific models,45 each
covariate is also essentially interactedwith a school fixed effect and an hour fixed effect—
meaning that the full covariate space includes over 12 million candidate variables.,46

Having hourly data for each school enables us to build a richmodel to effectively forecast
electricity usage out of sample.47 In addition to these unit-specific variables, we also in-
clude consumption at untreated schools as a potential predictor, in the spirit of the syn-
thetic control literature (Abadie et al. 2010). The LASSO algorithm then uses cross-
validation to parameterize the degree of saturation of the model and pick the variables
that are included.48

Validity Checks. We perform several diagnostic tests to assess the performance of
our predictions. Figure 3 presents four such checks. First, panel A plots the number
of selected covariates for each model against the size of the pre-treatment sample.
LASSO penalizes extraneous variables, meaning that the optimal model for any given
school will not include all of the candidate regressors.49 Though the LASSO typically
selects fewer than 100 variables, the joint set of variables selected across all schools and
hours covers the majority of the candidate space (a total of 1,149 variables are selected),
highlighting the importance of between-school heterogeneity.

We can also inspect the selected covariates individually. As an illustration, panel B
of figure 3 shows the coefficient on the holiday dummy (and its interactions) in each
45. To make the approach computationally tractable, we estimate a LASSO model one
school-hour at a time. Therefore, each school-hour model has a few thousand variables at a
time.

46. Note that we do not include time trends in the prediction model, because we are gen-
erating predictions substantially out of sample and these trends could dramatically drive predic-
tions. The underlying assumption necessary for the predictions to be accurate is that units are in
a relatively static environment, at least on average, which seems reasonable in this particular
application.

47. In step 2, we aggregate the data to the school-by-month-by-hour level to speed regres-
sion computation time. However, we generate the underlying predictions using the highest-
frequency data available, to enable the model to flexibly capture features that matter for energy
use.

48. We use the package glmnet in R to implement the estimation of each model. To cross-
validate the model, the algorithm separates the pre-treatment data (from one school at a time)
into “training” and “testing” sets. The algorithm finds the model with the best fit in the training
data and then tests the out-of-sample fit of this model in the testing set. We tune the glmnet
method to perform cross-validation using a block-bootstrap approach, in which each week is
considered to be a potential draw. This allows us to take into account potential autocorrelation
in the data.

49. The LASSO performs best when the underlying data generating process is sparse
(Abadie and Kasy 2019). We find evidence in favor of this in our empirical context, as the num-
ber of chosen regressors does not scale linearly with the size of the training set.
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school-hour-specific prediction model.50We find that, across models, holidays are neg-
atively associated with energy consumption. This suggests that the LASSO-selected
models reflect real-world electricity use. We also find substantial heterogeneity across
schools: each of the candidate holiday variables is selected at least once, but the median
school has no holiday variable, highlighting the importance of data-driven model
selection.

Panel C of figure 3 shows the variables selected by each of the school-hour models
for treated and untreated schools separately. Nearly all of the models include an inter-
cept, and around 70% of the models include consumption from at least one untreated
Figure 3. Machine learning diagnostics. This figure presents three checks of our machine
learning methodology. Panel A displays the relationship between the number of observations
in the pre-treatment (“training”) data set and the number of variables LASSO selects to include
in the prediction model for each school in the sample. Panel B displays the marginal effect of
holiday indicators in each school-specific prediction model. Panel C displays the categories of
variables selected by our preferred LASSO method for untreated and treated schools. Finally,
panel D shows the distribution of average prediction errors out of sample for untreated schools
(trimming the top and bottom 1%). Color version available as an online enhancement.
50. We define “holidays” to include major national holidays, as well as the Thanksgiving and
winter break common to most schools. Unfortunately, we do not have school-level data for the
exact dates of summer vacations, although the seasonal splines should help account for any long
spells of inactivity at the schools.
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school; the median school-hour model includes 10 such covariates. Month and temper-
ature variables are each included in nearly half of the models. Several models also in-
clude interactions between temperature and weekday dummies. This again demon-
strates the substantial heterogeneity in prediction models across schools and suggests
that our machine learning method yields counterfactual predictions that are substan-
tially more flexible than their traditional panel fixed effects analogue, wherein we would
estimate the same covariates for each unit.

Finally, we can perform a fully out-of-sample test of our approach by inspecting pre-
diction errors at untreated schools in the post-treatment period. Because these schools
do not experience energy efficiency upgrades, these prediction errors should be close to
zero. Panel D of figure 3 plots the distribution of average out-of-sample prediction er-
ror for each school-hour, trimming the top and bottom 1%. As expected, this distribu-
tion is centered around zero.51 Taken together, these four checks provide evidence that
the machine learning approach is performing well in predicting schools’ electricity con-
sumption, even out of sample.

2.2.3. Step 2: Panel Regressions with Prediction Errors

We now regress the prediction errors from the machine learning model on a treatment
indicator and the rich set of fixed effects we use in the earlier panel fixed effects ap-
proach. Panel A in table 4 reports results from estimating equation (4) for five different
fixed effects specifications. We find that energy efficiency upgrades resulted in energy
consumption reductions of between 2.1 and 3.9 kWh/hour. In our preferred specifi-
cation (col. 5), which includes school-by-hour-by-month and month-of-sample fixed
effects, we find that energy efficiency upgrades reduced electricity use by 2.4 kWh/hour
in treated schools relative to untreated schools. These results are both larger and more
stable across specifications than the panel fixed effects results above and are highly sta-
tistically significant.52

We again compare these results to the ex ante engineering estimates to form real-
ization rates. Our estimated realization rates range from 0.53 to 0.92. These realization
rates are statistically different than zero and larger than the estimates from our panel
fixed effects approach. Some of the specifications imply that realized savings were close
to expected savings, with our preferred specification implying a realization rate of 60%.

Panel B in table 4 presents the alternative realization rates from equation (5). The
estimated rates are stable across specifications ranging 0.50 to 0.58. As in the regression
51. Because we see no trends in observable outcomes in fig. 2, the fact that this distribution is
centered around zero provides further evidence that untreated schools are not undertaking un-
subsidized energy efficiency measures that are not observed in our data.

52. In appendix table C.11, we present results two-way clustering on school and month of
sample. The results remain highly statistically significant using these alternative approaches.
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case, the estimated rates using this alternative approach are smaller, consistent with
measurement error in expected savings.

2.2.4. Machine Learning Robustness

Trimming. As with the panel fixed effects approach, we test the extent to which our
machine learning results vary as we exclude outlying observations in table 5. In panel A,
we drop observations that are below the 1st or above the 99th percentile of the depen-
dent variable—now defined as prediction errors in energy consumption. Unlike in the
panel fixed effects approach, we find that this trimming has very limited impacts on the
results. We now find point estimates ranging from –3.52 kWh/hour to –2.12 kWh/
hour, and accompanying realization rates ranging from 0.55 to 0.86. These are similar
to our estimates in table 4. In panel B, we again trim schools with expected savings below
the 1st or above the 99th percentile. We find that this, too, does not meaningfully alter
either our point estimates or our realization rates, which now range from –3.69 kWh/
hour to –1.87 kWh/hour and 0.52 to 0.98, respectively. Finally, In panel C, we trim on
Table 4. Machine Learning Results

(1) (2) (3) (4) (5)

A. Average program
estimates:

Realization rate .86 .92 .75 .53 .60
Point estimate –3.64 –3.92 –3.17 –2.10 –2.42

(.50) (.52) (.49) (.47) (.49)
Observations 57,481,920 57,480,360 57,480,360 57,481,920 57,480,360

B. Average school-specific
estimates:

Realization rate .57 .58 .55 .50 .50
(.13) (.14) (.14) (.13) (.13)

Observations 57,481,920 57,480,360 57,480,360 57,481,920 57,480,360
School-hour FE Yes Yes Yes Yes Yes
School-hour-month FE No Yes Yes No Yes
Time trend No No Yes No No
Month of sample FE No No No Yes Yes
Note. Panel A in this table reports results from estimating eq. (4), with prediction errors in hourly en-
ergy consumption in kWh as the dependent variable. The independent variable is a treatment indicator, set
equal to 1 for treated schools after their first upgrade, and 0 otherwise. Standard errors, clustered at the
school level, are in parentheses. Realization rates are calculated by dividing the regression results on a com-
plementary regression of ex ante engineering energy savings where expected (and zero otherwise) on our treat-
ment variable, also including the same set of controls. Panel B reports results from estimating eq. (5), in which
the independent variable equals (the negative of ) average expected savings for treated schools after their first
upgrade, and 0 otherwise. All regressions include a control for being in the post-training period for the ma-
chine learning. FE 5 fixed effects.
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both dimensions and again find remarkably stable point estimates and realization rates,
ranging from –3.41 to –2.05 kWh/hour and 0.58 to 0.92.While the panel fixed effects
results displayed in table 3 were highly sensitive to these trimming approaches, the ma-
chine learning results are quite stable.53

Measurement Error. As with the panel approach, a concern in this setting is mis-
measured treatment dates. We also run “donut” specifications where we drop months
immediately before and after treatment. We present these results in appendix tables C.14
Table 5. Sensitivity of Machine Learning Results to Outliers

(1) (2) (3) (4) (5)

A. Trim outlier observations:
Realization rate .82 .86 .71 .55 .61
Point estimate –3.34 –3.52 –2.90 –2.12 –2.35

(.34) (.35) (.32) (.30) (.32)
Observations 56,332,278 56,330,677 56,330,677 56,332,278 56,330,677

B. Trim outlier schools:
Realization rate .91 .98 .78 .52 .61
Point estimate –3.42 –3.69 –2.92 –1.87 –2.18

(.47) (.50) (.47) (.44) (.47)
Observations 56,737,632 56,736,096 56,736,096 56,737,632 56,736,096

C. Trim observations and
schools:

Realization rate .87 .92 .76 .58 .64
Point estimate –3.22 –3.41 –2.80 –2.05 –2.27

(.33) (.35) (.32) (.30) (.32)
Observations 55,673,654 55,672,077 55,672,077 55,673,654 55,672,077

School-hour FE Yes Yes Yes Yes Yes
School-hour-month FE No Yes Yes No Yes
Time trend No No Yes No No
Month of sample FE No No No Yes Yes
53. Appendix table C.13 pr
rate calculations.
esents the an
alogous resu
lts for the s
chool-specific
Note. This table reports results from estimating eq. (4), with prediction errors in hourly energy con-
sumption in kWh as the dependent variable. The independent variable is a treatment indicator, set equal
to 1 for treated schools after their first upgrade, and 0 otherwise. Standard errors, clustered at the school
level, are in parentheses. Realization rates are calculated by dividing the regression results on a complemen-
tary regression of ex ante engineering energy savings where expected (and zero otherwise) on our treatment
variable, also including the same set of controls. All regressions include a control for being in the post-training
period for the machine learning. In panel A, we drop observations below the 1st or above the 99th percentile of
the dependent variable: energy consumption. In panel B, we drop schools below the 1st or above the 99th per-
centile of expected savings. In panel C, we drop both.
realization
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and C.15. Our estimated average program realization rates rise somewhat, from 0.60 with
the full sample to 0.68 dropping 3 months before and after, using our preferred spe-
cification; the school-specific realization rates rise from 0.50 to 0.56. Our main speci-
fication also uses a binary treatment variable, rather than a continuous measure. In ap-
pendix table C.16, we present results with a continuous timing variable. As with the
panel approach, these are quite attenuated (our preferred realization rate estimate falls
to 0.24), hence our preference for the binary timing of treatment variable.

Alternative Prediction Approaches. How sensitive are our results to our use and im-
plementation of the LASSO algorithm? Depending on the underlying data, different
algorithms may be more effective than others (Mullainathan and Spiess 2017). As de-
scribed in section 2.2.1, the LASSO appears to generate well-behaved models.We find
similar out-of-sample prediction effectiveness in untreated schools across our choice of
tuning parameters and potential covariates, as well as when we train our models using a
random forest algorithm rather than a LASSO algorithm. We also explore an alterna-
tive approach using double machine learning (Chernozhukov et al. 2018), which has as
a key difference that all the data are used for the prediction, not just the pre-period.54

Appendix table C.17 shows the results where we estimate equation (2) with differ-
ent prediction algorithm approaches. We find energy savings between 2.20 kWh per
hour and 2.46 kWh per hour. Using our preferred LASSO approach (col. 4), we
estimate savings of 2.42 kWh per hour. These estimates translate into realization rates
of 0.54, 0.61, and 0.60, respectively.55 Given that the double machine learning ap-
proach is the most different in spirit, as it takes advantage of the whole sample to
estimate the model (as opposed to just pre-treatment data), we also include in appen-
dix table C.18 the analogues of tables 4 and 5 for the double machine learning approach.
These estimates are generally not statistically distinguishable, suggesting that the ma-
chine learning approach is not highly sensitive to our chosen prediction algorithm.

2.3. Comparing Approaches

In contrast with the standard panel fixed effects approach, our machine learning method
delivers results that are larger and substantially less sensitive to both specification and
sample selection. This highlights one advantage of using machine learning approaches
in panel settings: by controlling for confounding factors using a flexible data-driven ap-
proach, this method can produce results that are more robust to remaining researcher
choices.
54. Note that the regression specification in this case is different, as the double machine learn-
ing approach needs to also partial out the timing of treatment. Therefore, we regress the predic-
tion errors of electricity consumption on the prediction errors of the treatment variable. See
appendix table C.18 for more details.

55. Figure C.2 shows hour-specific treatment effects for all of the machine learning methods
shown here. Both the hourly patterns and the levels are very similar across methods.
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We explore this result further in figure 4, which shows the distribution of estimated
realization rates across several specifications and samples. Notably, the policy implica-
tions from the different panel fixed effects estimates vary widely and are centered around
a 40% realization rate, whereas the estimates using the machine learning approach are
more stable around realization rates closer to 60%. As shown in the figure, controlling
for temperature in the panel regressions does not meaningfully impact the comparison
between the two approaches.

While researchers could attempt a variety of alternative specifications in an ad
hoc way in order to reduce sensitivity to specification and sample, this approach is im-
practical with high-frequency data sets. Doing model selection by hand is computa-
tionally expensive and arbitrary.56 In contrast, our machine learning approach enables
Figure 4. Comparison of methods across specifications and samples. This figure shows the
distribution of implied realization rates using three alternative approaches: a panel fixed effects
regression, a panel fixed effects regression with school-specific temperature controls, and a ma-
chine learning approach. The results include five specifications per method (with the fixed effects
as described in cols. 1–5 of the main tables 2 and 4). For the panel with temperature, we include
the same fixed effects, and in all specifications, also include school-specific temperature controls.
For all three curves, each of the five specifications is estimated on five different samples: no trim-
ming, trimming observations below the 1st (2nd) and above the 99th (98th) percentile of the
dependent variable, trimming the schools with smallest and largest 1% of interventions, and a
combination of the latter two 1% trims. Each kernel density is computed from a total of 25 es-
timates. Color version available as an online enhancement.
56. Given that we have an unbalanced panel, in which some schools are observed for longer
periods than others, it is also unclear that saturating the model equally across schools is neces-
sarily the best strategy.
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researchers to perform model selection in a flexible yet systematic way, while maintain-
ing the identifying assumptions needed for causal inference in a standard panel fixed
effects approach.

3. HETEROGENEITY IN REALIZATION RATES

Our preferred estimates imply that energy efficiency upgrades in public schools only
delivered 60% of expected savings. What other lessons can we learn from the data?
Unfortunately, we cannot perform a full cost-benefit analysis, which would require ac-
counting for the full benefits of the energy efficiency upgrades as well as reliable cost
data. First, energy efficiency upgrades may be associated with welfare benefits beyond
reductions in electricity consumption.57 Second, the data we obtained from PG&E do
not contain comprehensive information on costs.58

However, our methodology allows us to further explore heterogeneity in realiza-
tion rates. Beyond estimating average realization rates, understanding whether these
rates vary based on observable characteristics of upgrades or treated schools may be
informative for policy makers deciding which upgrades to subsidize and which schools
to target.59

Given the richness of our electricity consumption data, we start by estimating
school-specific treatment effects, as a precursor to determining what drives heteroge-
neity in realization rates. These estimates should not be taken as precise causal esti-
mates of savings at any given school, but rather as an input to projecting heterogeneous
57. As we discuss in sec. 1, public funding was directed toward energy efficiency upgrades in
K–12 schools in California in part because of the difficulty schools face in raising funds for cap-
ital upgrades, which could increase the marginal value of the upgrades. Additionally, more ef-
ficient air conditioning units could mitigate the negative impacts of high temperatures on human
capital accumulation (Graff Zivin et al. 2017; Garg et al. 2020, in this issue; Park 2020). We
provide suggestive evidence that energy efficiency upgrades do not improve standardized test
scores in fig. 2, though aggregate test scores remain an imperfect and noisy proxy for human
capital accumulation.

58. The only cost information in our data set is the “incremental measure cost,” a measure of
the difference in the cost of a “base case” appliance replacement versus an energy-efficient ver-
sion. We do not, however, have data on the total cost of the appliance replacement, nor on pro-
jected energy savings from the base case counterfactual.

59. There can also be heterogeneity in the timing of savings. As Borenstein (2002) and
Boomhower and Davis (2020) point out, however, the value of energy savings varies over time.
We estimate hour-specific treatment effects, presented in fig. C.2, across several machine learn-
ing methods. We find evidence that the largest reductions occur during the school day, consis-
tent with our results picking up real, rather than spurious, energy savings. Because our focus in
this paper is on realization rates, which are determined by overall savings, we do not focus on
these additional estimates.
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estimates onto school-specific and intervention-specific covariates for descriptive
purposes.60

To compute these school-specific estimates, we regress prediction errors in kWh
on a school-specific dummy variable, equal to one during the post-treatment period
(or, for untreated schools, the post-training period from the machine learning model),
as well as school-by-hour-by-month fixed effects to control for seasonality. The result-
ing estimates represent the difference between pre- and post-treatment energy con-
sumption at each individual school. We follow Chandra et al. (2016) and use an em-
pirical Bayes approach to shrink the school-specific estimates. We can use these
school-specific estimates to understand the distribution of treatment effects and try
to recover potential systematic patterns across schools.

Panel A of figure 5 displays the relationship between these school-specific savings
estimates and expected savings for treated schools after implementing the shrinkage
procedure. We find a positive correlation between estimated savings and expected sav-
ings, although there is substantial noise in the school-specific estimates. Once we trim
outliers in expected savings, we recover a slope of 0.41.61 As we expected, this is close
Figure 5. School-specific effects. This figure displays school-specific savings estimates. We
generate these estimates by regressing prediction errors in kWh onto an intercept and school-
by-post-training dummies. The coefficients on these dummies are the savings estimates. Panel
A compares estimated savings with expected savings among treated schools only. Panel B displays
kernel densities of estimated savings in the untreated group (gray line) and estimated savings in
the treated group (dark gray line). Color version available as an online enhancement.
60. Naturally, the identifying assumptions required to obtain school-specific treatment ef-
fects are much stronger than when obtaining average treatment effects, as concurrent changes
in consumption at each specific school will be confounded with its own estimated treatment ef-
fect (i.e., random coincidental shocks to a given school that might not confound an average
treatment effect will certainly confound the school-specific estimate of that given school).

61. Before shrinking the estimates, we recover a slope of 0.44.
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to the estimates from our second realization rate approach, which estimates the aver-
age school-specific realization rate.

Panel B of figure 5 presents a comparison of the school-specific effects between
treated and untreated schools. The estimates at untreated schools are much more
tightly centered around zero, in line with panel D of figure 3. In contrast, the distri-
bution of treated school estimates is shifted toward additional savings, consistent with
schools having saved energy as a result of their energy efficiency upgrades.62 These re-
sults are in line with our main finding that energy efficiency projects successfully de-
liver significant savings, although the relationship between the savings that we can
measure and the ex ante predicted savings is noisy.

To explore heterogeneity in realization rates, we explore the correlation between
our school-specific savings estimates and school and intervention covariates (latitude,
longitude, school enrollment, type of intervention, etc.).63 Ultimately, we uncover
noisy correlations between school characteristics and realization rates, suggesting that
finding “low-hanging fruit” to improve the success of energy efficiency upgrades in this
setting is difficult. That said, several features of our setting make recovering these
types of patterns particularly challenging. Our sample of treated schools is relatively
small and each of the schools is subject to its idiosyncrasies, leading to concerns about
collinearity and omitted variables bias. It is possible that, with more homogeneous en-
ergy efficiency projects and a larger pool of treated units, policy makers could identify
covariates that better predict realization rates. This information could be used to tar-
get the most effective interventions and improve average performance.

4. CONCLUSION

We leverage high-frequency data on electricity consumption and develop a machine
learning method to estimate the causal effect of energy efficiency upgrades at K–12
schools in California. We use two main approaches to do this, both of which leverage
cross-sectional and temporal variation to separate the causal effect of energy efficiency
upgrades from other confounding factors.We begin with a panel fixed effects approach.
Using this method, we estimate that energy efficiency upgrades saved 40% of ex ante
estimated savings. However, these estimates are sensitive to specification and outliers,
and range from 12% to 86%. Given the richness of our setting, there are millions of pos-
sible covariates we could include as controls. In order to parsimoniously select among
62. Figure C.3 presents the results using the double machine learning procedure rather than
our standard approach. We find quantitatively similar estimates (a slope of 0.40) using this al-
ternative method.

63. See app. B for a detailed presentation of the regressions and their results. Importantly, we
only have one observation per treated school, for a total sample size of fewer than 1,000 units. In
addition to these regressions not being causally identified, the limited sample means they should be
interpreted with caution.



1214 Journal of the Association of Environmental and Resource Economists November 2020
these control variables, we implement a second approach, using tools from machine
learning.

In our machine learning approach, we use untreated time periods in high-frequency
panel data to generate school-specific predictions of energy consumption that would
have occurred in the absence of treatment for both treated and untreated schools.
We generate prediction errors by comparing these predictions to realized energy con-
sumption and estimate the causal effect of energy efficiency upgrades by estimating a
panel fixed effects model using prediction errors as the outcome variable. This ap-
proach allows us to select among covariates in a parsimonious way, while still account-
ing for common shocks. Our approach is computationally tractable and can be applied
to a broad class of applied settings where researchers have access to relatively high-
frequency panel data.

Using this method, we find that energy efficiency upgrades deliver 60% of ex ante
expected savings on average. As compared to our panel fixed effects approach, we see
that the machine learning approach delivers a narrower range of estimates: energy ef-
ficiency upgrades deliver between 52% and 98% of expected savings, depending on out-
liers and specification, allowing us to reject the very low realization rates suggested by
some of the panel specifications. This highlights the potential benefits of using ma-
chine learning to select among a large set of exogenous control variables. We explore
heterogeneity in realization rates but we ultimately find it difficult to identify school
characteristics that systematically predict higher realization rates. This suggests that
without collecting additional data, improving realization rates via targeting may prove
challenging.

This paper extends the energy efficiency literature to a nonresidential sector. We
demonstrate that energy efficiency upgrades deliver lower savings than expected ex
ante, although in some specifications we cannot reject full realization rates and are able
to reject some of the extremely low realization rates of the prior literature. These re-
sults have implications for policy makers and building managers deciding over a range
of capital investments and demonstrate the importance of real-world, ex post program
evaluation in determining the effectiveness of energy efficiency. Beyond energy effi-
ciency applications, we show how machine learning tools can help with specification
choice, leading to results that are robust to the machine learning algorithm of choice,
varying sets of fixed effects, and the treatment of outliers.
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