ARE 212 SecTION 10:
Non-Standard Standard Errors 11

Fiona Burlig
March 31, 2016

This week, we’ll continue our discussion of non-standard standard errors. I've been looking all over for a compre-
hensive set of notes on standard errors, and couldn’t find satisfactory ones - so I used this section as an excuse to
make my own (sorry not sorry). We’ll cover plain OLS, Eicker-Huber-White, Newey-West, Conley, and clustered
standard errors. Just like calculating point estimates, it’s incredibly important to get your standard errors right.
You have to know what you don’t know - the unknown unknowns are the dangerous ones." This will be a fairly
matrix-algebra-heavy section, so fasten your seatbelts, and let’s get started. These notes are quite long: We’ll
have to gloss over some of the finer points in section, but you’ll have this as a reference guide going forward.

Off we go

We're going to start with a little bit of a review. A standard error is of course an estimate of the uncertainty

around an estimated parameter. It takes the general form of se = V(,é), and to estimate it, we have to make
an estimate of the variance of our estimated parameter.? Suppose we have the following data generating process:

Y=XB+¢
As you well know, we can write:
B =(X'X)"'X'Y
With complete generality, we can write down the OLS variance-covariance matrix as:
V(B) = V(X'X)'X'Y) = (X'X)"'X'ZX(X'X) !

we know what X looks like, so that means that we know what (X’X)"!'X’ and what X(X’X)~! look like - the
only thing we don’t (necessarily) know is what 3 looks like. But it turns out that writing this down in general
terms is trivial. In the most general terms, we can write X as

£1€1 €12 ... €E1EN
£92€1 E9E9 ... EQEN
ENE1 ENE2 ... ENEN

!Thanks, Donny R.
2That’s a lot of hats. We could have a small party. All that’s saying is it’s the estimated variance around the estimated parameter.

In the Beginning, [Econometricians| created the Spherical Error

When we make our standard OLS spherical errors assumption, however, this matrix simplifies to:

o2 0 ... 0
0 o> ... 0
3 =
0 0 ... o7
To see this, remember that spherical errors means that E[ze’|X] = 0?I. This means that the variance of f3,

assuming spherical errors is®:

VIE(B) = (X'X)IXZX/(X'X) !
= (X'X) X IX/ (X'X) !
= 2(X'X)IX'X(X'X)!
— 0_2 (X/X)_l

This should look familiar to you. Now let’s talk about actually calculating standard errors on our beta coefficients.
The good news is that X is data. So all we need is an estimate of 0. Remember that, under these assumptions, we

can estimate o2 with s? = % This means that we can calculate the standard error of §; as se(f3;) = /52 (X’X)j_jl.

Let’s show this using data.? As usual, we’ll start by grabbing a few of our favorite things®. We’ll also install four
new packages, Matrix, sandwich, HistData, and robustbase:

install.packages('Matrix')
install.packages('sandwich')
install.packages('HistData')
install.packages('robustbase')

library (dplyr)
library(ggplot2)
library(1lfe)
library(Matrix)
library(sandwich)
library(HistData)
library(robustbase)

as.tbl_df <- function(data) {
dataset <- as.data.frame(data) %>%
tbl_df ()

3Some people call these “OLS” standard error. I think this is kind of weird terminology, because we run OLS and compute different
standard errors all the time. But I am (fortunately) not in charge of the world of econometrics.

41 know we’ve calculated plain vanilla standard errors before - but for completeness’ sake, we’ll do it here too.

SEnter Maria von Trapp.

}

tbldfGrabber <- function(data, varnames) {
matrixObject <- data %>%
select_(.dots = varnames) %>Y%
as.matrix()

}

miniOLS <- function(data, y, X) {
n <- nrow(data)
k <- length(X)
ydata <- tbldfGrabber(data, y)
xdata <- tbldfGrabber(data, X)
betahat <- solve(t(xdata) %*% xdata) %xJ t(xdata) %xJ), ydata
return(betahat)

miniResids <- function(data, y, X) {
n <- nrow(data)
k <- length(X)
ydata <- tbldfGrabber(data, y)
xdata <- tbldfGrabber(data, X)
betahat <- solve(t(xdata) %+’ xdata) %*J t(xdata) %*J) ydata
e <- ydata - xdata %*% betahat
output <- list(xdata, e)
return(output)

#itpiiias#t RANDOMIZATION SEED
set.seed(12345)

#u######A## GGPLOT SETUP

myThemeStuff <- theme(panel.background = element_rect(fill = NA),
panel.border = element_rect(fill = NA, color = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),

axis.ticks = element_line(color = "grayb5"),

axis.text = element_text(color = "black", size = 10),
axis.title = element_text(color = "black", size = 12),
legend.key = element_blank()

)

We’re going to use the diamonds dataset from ggplot2 for this exercise, because why not. Let’s regress price on
carats and depth. We’ll want to run the regression, compute the residuals, and spit out the standard error on
both coefficients, so let’s update our OLS function to do this.

diamonds <- mutate(diamonds, ones = 1)

0lsSE <- function(data, y, X) {
n <- nrow(data)
k <- length(X)
ydata <- tbldfGrabber(data, y)
xdata <- tbldfGrabber(data, X)
betahat <- solve(t(xdata) %*% xdata) %*% t(xdata) %*% ydata
e <- ydata - xdata %*% betahat
s2 <= (t(e) %*% e / (n - k)
XpXinv <- solve(t(xdata) %*J, xdata)
se <- sqrt(s2 * diag(XpXinv))
olsOut <- list(betahat, se)
names (olsOut) <- c("betahat", "se")
return(olsOut)

}

Aaaaaand go:

myReg <- olsSE(data = diamonds, "price", c("ones", "carat", "depth"))
myReg

$betahat

#i#t price

ones 4045.3332

carat 7765.1407

depth -102.1653

##

$se

[1] 286.205390 14.009367 4.635278

And, as usual, we’ll check this against felm():

cannedReg <- felm(data = diamonds, price ~ carat + depth) %>%
summary ()

cannedReg

##

Call:

felm(formula = price ~ carat + depth, data = diamonds)
##

Residuals:

#it Min 1Q Median 3Q Max

-18238.9 -801.6 -19.6 546.3 12683.7

##

Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

(Intercept) 4045.333 286.205 14.13 <2e-16 **x*

carat 7765.141 14.009 554.28 <2e-16 *x*x*

depth -102.165 4.635 -22.04 <2e-16 *xxx*

——-

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

Residual standard error: 1542 on 53937 degrees of freedom

Multiple R-squared(full model): 0.8507 Adjusted R-squared: 0.8507

Multiple R-squared(proj model): 0.8507 Adjusted R-squared: 0.8507

F-statistic(full model):1.536e+05 on 2 and 53937 DF, p-value: < 2.2e-16
F-statistic(proj model): 1.536e+05 on 2 and 53937 DF, p-value: < 2.2e-16

Looks good to me. But of course, we should make sure that our OLS assumptions make sense. One easy way to
do this is to plot our data:

myPlot <- ggplot(data = diamonds, aes(y = price, x = carat)) +
geom_point(color = "gray50", shape = 21) +

myThemeStuff
myPlot
P ° ° .
o
[e]
o
o o ° o
15000 o0 °
o
o
% (o]
o o
%
8 10000 o o
a
[}
o]
5000+
0-
0 1 2 3 4 5

carat

There are a bunch of things about this figure which should concern you, not least of which is that there seems to
be severe discontinuities or bunching at different carat values.® From an OLS-assumption perspective, you should
be very afraid that these data are definitely not homoskedastic. The higher the carat, the greater the variance in
price. Our OLS standard errors are likely getting things wrong.

5Did I mention I was involved in buying two diamond rings in the last few years, and the market is a mess? That’s a story for
another day.

reg y x comma robust

Heteroskedasticity is scary - but thankfully, all is not lost!” All we have to do is tweak our original assumptions a
little bit. We’ll retain the assumption that observations are iid draws, meaning that the off-diagonal terms of our
3 matrix will remain zero. But, importantly, we’ll relax the homoskedasticity assumption.®

Assuming #id draws, we can invoke a Central Limit theorem, which gives us the following result®:

1 d
ﬁ Z Xz‘gi — N(O> E[XZX{‘S?])
i

This gives us a 3 matrix that looks like this:

o2 0 0

0 o2 0
> = ?

0o 0 ... 0]2\,

This new matrix doesn’t look too daunting, but instead of needing one estimate of o2, now we need a 03 estimate
for each observation in our data. Crap!

We could deal with this in one of two ways. First, we could recognize that we could write the off-diagonal terms
as 02(X;), where o2 is now a function of X; (this is what heteroskedasticity means - the variance depends on the
value of X;), and then we could try to parametrically model this function. You should be very wary of anyone
who says they can do that credibly.'®

Good news, though! Thanks to Eicker, Huber, and White (since Max got his PhD from San Diego, he only thanks

White), it turns out that we can actually use 622 as non-parametric estimates of 012. Lucky for us, e% are consistent

for the true errors, which lets us write (notice the new hats!)!!:
V(B) = (X'X) I X'BX(X'X) !
= (X'X) > xXiel | (X'X)!
i
This is called a “sandwich” estimator, because we “sandwich” our estimate of the “meat”, X’XX between “bread”,

(X'X)"!. Delicious, delicious errors.

One great thing about sandwich estimators is that they only require us to estimate the k-by-k sandwich, rather
than the n-by-n X, which we couldn’t do with only n observations!

"If it were, we’d have to close down a lot of economics departments. It’s incredibly rare in actual data to have homoskedasticity.

8If you’re a Stata person, the following is equivalent to typing ¢, robust” in your regression command - with non-panel data. If you’re
interested in running a regression with panel data in Stata, and have heteroskedasticity, check this out first. Shameless self-promotion,
I know.

9Notice that this relies on an asymptotic result - so don’t just go applying what we’re about to do in small samples.

10This is especially true because often, heteroskedasticity results from the fact that a linear regression is a misspecified model of the
true DGP: if we have a non-linear DGP and try to fit a straight line to it, we’ll often end up with errors that are heteroskedastic. If
you're not getting your model right in the first place, why should we trust you to get your model of your errors right? That’s what I
thought.

171f you don’t trust me, the original math is here. Both Max’s notes (section 5.1) and Wooldridge, pp. 171-172, have treatments of
this as well.)

http://www.fionaburlig.com/blog/2016/1/28/standard-errors-in-stata-a-somewhat-cautionary-tale
http://www.jstor.org/stable/1912934

We commonly call the resulting standard errors “robust”, or “heteroskedasticity-robust”.'?> Not to be confused
with “cluster-robust.” We’ll get to that. But let’s not get ahead of ourselves.

Let’s go ahead and implement this in R. We’ll need to adjust our OLS function slightly. We’ll need the Diagonal ()
function from the Matrix package to do this.

olsEHW <- function(data, y, X) {
n <- nrow(data)
k <- length(X)
ydata <- tbldfGrabber(data, y)
xdata <- tbldfGrabber(data, X)
betahat <- solve(t(xdata) %*% xdata) %*) t(xdata) %} ydata
e <- ydata - xdata %x*% betahat
create our estimated sigma matrixT
sigmamat <- Diagonal(n, e~2)
XpXinv <- solve(t(xdata) %*J, xdata)
create the full v—cov matriz
vCov <- t(XpXinv) %*% t(xdata) %*% sigmamat %*), xdata %*}% XpXinv
se <- sqrt(diag(vCov))
olsOut <- list(betahat, se)
names (olsOut) <- c("betahat", "EHWse")
return(olsOut)

And let’s test this out:

myEHW <- olsEHW(data = diamonds, "price", c("ones", "carat", "depth"))
myEHW

$betahat

price

ones 4045.3332

carat 7765.1407

depth -102.1653

##

$EHWse

[1] 369.166140 25.104229 5.945381

Let’s also compare this to the canned version in R:

note we tell felm to get robust SE's when we look at the summary

cannedReg <- felm(data = diamonds, price ~ carat + depth) %>%
summary (robust = TRUE)

cannedReg

##

120r “White”, or “Huber-White”, or “Eicker-Huber-White”, or ...

Call:

#Hit felm(formula = price ~ carat + depth, data = diamonds)
##

Residuals:

Min 1Q Median 3Q Max

-18238.9 -801.6 -19.6 546.3 12683.7

##

Coefficients:

#Hit Estimate Robust s.e t value Pr(>|tl)

(Intercept) 4045.333 369.176 10.96 <2e-16 **x*

carat 7765.141 25.105 309.31 <2e-16 **x*

depth -102.165 5.946 -17.18 <2e-16 **x*

##t ———

Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 "' ' 1
##

Residual standard error: 1542 on 53937 degrees of freedom

Multiple R-squared(full model): 0.8507 Adjusted R-squared: 0.8507

Multiple R-squared(proj model): 0.8507 Adjusted R-squared: 0.8507

F-statistic(full model, *iid*):1.536e+05 on 2 and 53937 DF, p-value: < 2.2e-16
F-statistic(proj model): 4.878e+04 on 2 and 53937 DF, p-value: < 2.2e-16

Boom! Spot on.'? It’s notable that the Eicker-Huber-White standard errors are larger than the regular standard
errors - since you should be suspicious of everything, you should be happier with the EHW version. Another thing
to be suspicious about: as we mentioned before, the EHW standard errors rely on asymptopia. They’ve been
shown to be biased in finite samples, and unfortunately for us, biased towards zero.

Pop quiz: what would happen if you tried to Eicker-Huber-White, not only the diagonal elements, but the entire
3 matrix, by which I mean not assuming anything about the off-diagonal terms, and just estimating all of the
e;ej terms? This would be bad news bears. The EHW-equivalent estimator of the general X/2X matrix would
be >, Zj X;Xjeie; - but of course, by construction,) . X;e; = 0, so that won’t work. We’ll have to turn to a
different set of improvements over EHW to deal with the off-diagonals.

All about e

EHW standard errors are definitely an improvement over plain vanilla standard errors. But they obviously don’t
capture every situation. In particular, we might think that individual observations are correlated with one another.
The classic example of this is in time series data. It’s pretty common to think that the observation in time t is
correlated with the observation in ¢t + 1 or in ¢ — 1. This means that the off-diagonal elements in our lovely 3
matrix will no longer be zero - or in other words, that our draws are no longer ¢id. We now need to estimate these
elements too. But as you might have guessed, we're not going to have to come up with this estimator ourselves.
This time, we have Newey and West to thank. Let’s imagine a situation in which we have time series observations.
We’re going to introduce a new dataset for this, Wheat from the HistData package. Playfair used this dataset to
make a classic figure in 1821, showing two time series: wheat, and typical weekly wages.!*

13Note that if you were to run this in Stata, you’d get a slightly different answer, because Stata applies a degrees-of-freedom correction

to its estimate. To recover the Stata robust standard errors, simply multiply your standard errors by ,/-"+.

MTnterested in the original? Check it out! Hashtag historical data visualization.

http://visage.co/wp-content/uploads/2014/12/playfair-wheat-chart.jpg

As with any dataset, we should take a look at it:

wheatData <- as.tbl_df (Wheat) %>%
mutate(ones = 1) %>Y%
na.omit ()

wheatPlot <- ggplot(data = wheatData, aes(x = Year)) +
geom_line(aes(y = Wheat), color = "deepskyblue2") +
geom_line(aes(y = Wages)) +
ggtitle("Playfair's Wheat and Wages") +
xlab("Year") + ylab("Prices and wages (Shillings)") +
myThemeStuff

wheatPlot

Playfair's Wheat and Wages

100+

~
al
1

Prices and wages (Shillings)
(42
o

N
al
1

1600 1650 1700 1750 1800
Year

There’s clear serial correlation here, suggesting that this dataset is a good candiate for using standard errors that
are robust this correlation.

So: how do we estimate this thing? As always, we’re trying to get an estimate of 3. Suppose we have T
observations. In the presence of serial correlation between observations in period ¢ and period s, our assumed %
matrix looks like this (we're going to switch over to summation notation because it’s much easier to deal with):

T
3= % Z Z Pli—s| Xt X

t=1 s=1

where pj;_g is the serial correlation term between two observations that are ¢ — s periods apart. To estimate this,
we'll follow Newey and West and actually estimate the “meat” of our sandwich (X/XX) all in one go. They write

the estimator for the “meat” as'®:

L T .

- 1 1 J

XIZX = T E G?XtXé + T E E (1 - L——f—l) etet—l[XtXé—l + Xt_lXé]
t =1 t=l+1

Gross. But let’s break this down - it isn’t actually quite as bad as it looks. Notice that the first component,
>, €2 X, X/, is just the EHW estimate. We use that when ¢ = s - no lags (this would be I = 0). The observations
with no lags appear on the diagonal of our ¥ matrix. On the off-diagonals, now, though, we're allowing time
period t’s error term to be correlated with error terms that are up to [periods away. Rather than weighting all of
the terms between ¢t and t + m equally, though, we’ll assign higher weight to the terms closer to ¢. This is what

the (1 — L+r1> term does. Notice that we need one new choice variable to estimate this matrix: L, the maximum
distance between observations that we want to take into account in our error estimates. Usually, we use something
like L = T/*. We call this estimator a HAC: Heteroskedasticity- Autocorrelation-Robust, because it both accounts

for autocorrelation, and nests the heteroskedasticity-robust White estimator. Cool. Let’s give coding it up a go:

0lsNW <- function(data, y, X, L) {
usual setup (note now we're calling n t instead)
hashtag timeseries mindset
t <- nrow(data)
k <- length(X)
ydata <- tbldfGrabber(data, y)
xdata <- tbldfGrabber(data, X)
betahat <- solve(t(xdata) %*% xdata) %*% t(xdata) %*% ydata
note that we now need our residuals to be a vector not a mat
so that we can scalar-multiply them by our zmatriz
e <- as.vector(ydata - xdata %*), betahat)
emat t1s the scalar product of our residuals with the = mat
emat <- e * xdata
sets up our Newey-West weights -
they will start at 1, and maz out at 1 - L/(L + 1)
weights <- seq(1, 0, by = -(1/(L + 1)))
inttialize our eMat'eMat matrixz — note NOT = e'e
scale by 1/2 bc we're only estimating half of the matriz
eMatpeMat <- 0.5 * crossprod(emat) * weights[1]
create the lag-weighted terms we're going to add to our main mat
this spits out a list (note: lapply not sapply) of matrices
weightStep <- lapply(2:length(weights), function(l) {
crossprod(z,y) is just like t(z) /*/ y, but faster
weights[1] * crossprod(emat[1:(t - 1 + 1), 1, emat[1l:t,])
9
now actually add up all of the weighted summation terms
Reduce() consecutively applies a fzn to each element of a list
eMatpeMat <- eMatpeMat + Reduce("+", weightStep)

fully populate the matriz — so far we've just estimated the lower diagonal
eMatpeMat <- eMatpeMat + t(eMatpeMat)

5The original paper can be found here. There’s also a discussion of this estimator in Max’s notes. I use his notation here.

10

http://www.jstor.org/stable/1913610

create the "meat" of the sandwich by multiplying this big matriz by 1/t
meat <- eMatpeMat/t

create the bread (as usual)

bread <- solve(t(xdata) %*% xdata)

finally, the full sandwich: multiply by t to get everything to work out
sandwich <- t * (t(bread) %*), meat %x*}% bread)

as usual, se's are the sqrt of the diagonal of the sandwich

se <- sqrt(diag(sandwich))

fanally done!

output <- list(betahat, sandwich, se)

names (output) <- c("betahat", "sandwich", "se")

return(output)

}

This code is a little ugly - you might have to stare at it for a while (read: quite a while) to figure out exactly
what’s going on. Thankfully, for your future life, R has a canned routine, helpfully named NeweyWest (), and
belonging to the sandwich package, that will do this for you. Let’s do our due dilligence and test our estimates
against the canned ones. We’ll use the 7'/4 rule of thumb to compute the optimal lags. Note that the canned
routine only takes 1m() objects, not felm() objects - but you shouldn’t worry too much about this, since you’ll use
Newey-West standard errors in time series land, and likely not have that many fixed effects to worry about anyway.

We’ll start by grabbing our own estimates.

optimallags <- (nrow(wheatData))~(1/4)
myNW <- olsNW(wheatData, "Wheat", c("ones", "Wages"), optimalLags)

A couple of things to note about the canned routine: it doesn’t actually directly spit out standard errors; instead,
it returns either the meat or the full sandwich matrix. Luckily, we’re pretty good at dealing with that at this point.

wheatModel <- 1m(data = wheatData, Wheat ~ Wages)
cannedNW <- NeweyWest(wheatModel, lag = optimallags,

prewhite = FALSE, sandwich = TRUE)
cannedNWSE <- sqrt(diag(cannedNW))

Before we look at this, let’s actually take a quick look at the regular standard error estimates:

canned - regular SE
summary (wheatModel)

#i#

Call:

lm(formula = Wheat ~ Wages, data = wheatData)
##

Residuals:

#it Min 1Q Median 3Q Max

16Note that for this to work, your data needs to be ordered along the time dimension.

11

-18.163 -8.895 -2.3561 7.369 35.176

##

Coefficients:

it Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.5047 3.2587 8.747 1.67e-11 **x

Wages 1.1773 0.2384 4.939 9.92e-06 *x*x

##t ———

Signif. codes: 0 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

Residual standard error: 12.24 on 48 degrees of freedom
Multiple R-squared: 0.337,Adjusted R-squared: 0.3231
F-statistic: 24.39 on 1 and 48 DF, p-value: 9.922e-06

myNW$se

ones Wages
4.9733139 0.4908693

cannedNWSE

(Intercept) Wages
4.9733139 0.4908693

As we might expect, the Newey-West standard errors are larger than the ordinary standard errors in the presence
of serial correlation.

9

“It’s like we finish each other’s...” “Sandwiches!”

Newey-West standard errors are an important econometric advance - but it’s spatial data, not time series data,
that’re all the rage these days.!'” What if instead of having a time series of wheat prices, we have a cross-sectional
dataset on, say, the locations of earthquakes?'® The datasets package contains just such a dataset, of the locations
of earthquakes (as well as their depth, and Richter scale magnitude) in the vicinity of Haiti, quakes. Of course,
before we do anything with this dataset, we should go ahead and plot it. This will be our first foray into plotting
spatial data using ggplot2 - more on that later in the semester.

quakePlot <- ggplot(data = quakes, aes(x = long, y = lat, size = mag)) +
geom_point(shape = 21, color = "gray50") + myThemeStuff +
ggtitle("Haitian Earthquakes") + xlab("Longitude (deg)") + ylab("Latitude (deg)")

"You in the back asking about panel data - hold your darn horses.
8Obviously, these earthquakes didn’t happen all at once. But suppose for some reason we don’t observe the time dimension. Or
that we had a dataset of something that did happen all at once. Humor me and suspend your econometric disbelief.

12

quakePlot

Haitian Earthquakes

-104

mag
° 40
O 45
O 5.0
()55
()60

-201

Latitude (deg)

|
w
o

L

165 170 175 180 185
Longitude (deg)

There’s clear spatial dependence in the magnitudes of these earthquakes. So - we should again be worried that
our spherical errors assumption is violated.

Just like we can use Newey-West standard errors when we have a time series with serially correlated error terms,
there exists an analagous estimator for spatially correlated error terms, thanks to Conley.!” Conley standard
errors are also a form of HAC - except rather than being robust to temporal autocorrelation, they’re robust to
spatial autocorrelation. The good news is that the intuition carries over nearly identically from Newey-West. The
original Conley paper is written as a GMM estimator, but we can write up something that should look familiar in
our notation:

N N
X'$X = % Y3 XiXfeie; K(dyj)
i=1 j=1
where K () is a kernel function, and d;; represents the physical distance between unit ¢ and unit j. Just like in the
Newey-West setup, we have that our “meat” depends on how far apart observations are. Rather than specifying
lags, in this context, we specify a kernel to use - Conley himself recommends uniform, but other people like Bartlett
(triangular) or Epanechnikov. A uniform kernel, for example, will weight all observations that are within distance
v of observation ¢ equally, and all observations further than v as zero. Rather than chat too much more about it,
let’s go ahead and code it up.?? This code is modified from Sol’s Stata code?! :

olsConley <- function(data, y, X, lat, lon, cutoff) {

19The original paper is here, and a 2009 review article is here. Conley HAC standard errors have become popular in empirical
microeconomics recently in large part due to Sol Hsiang’s Stata and Matlab code, which he posted on his blog here. Sol has gotten a
ton of citations on his 2010 PNAS paper because of this code. This is a solid (Sol-id?) strategy. Thiemo Fetzer has since contributed an
update of this code which run more quickly, and added an R function as well. Both of these guys’ code allows for both cross-sectional
and time series dependence, but let’s not get ahead of ourselves.

29You should feel excited about this code because ooh, spatial correlation!, but also because, as far as I can tell, this code doesn’t
exist on the internet (and I'm a pretty good Googler). Sol only has code for Stata and Matlab, and Thiemo’s code only works for panel
data. So there you are: an ARE 212 section world premiere.

2MHis code is actually written in Mata - you’re welcome.

13

http://www.sciencedirect.com/science/article/pii/S0304407698000840
http://www.dictionaryofeconomics.com/article?id=pde2008_S000450
http://www.fight-entropy.com/2010/06/standard-error-adjustment-ols-for.html
http://www.trfetzer.com/category/software/

n <- nrow(data)

k <- length(X)

ydata <- tbldfGrabber(data, y)

xdata <- tbldfGrabber(data, X)

betahat <- solve(t(xdata) %+’ xdata) %*J% t(xdata) %*J), ydata
e <- ydata - xdata %x*% betahat

grab latitude & longitude
latdata <- tbldfGrabber(data, lat)
londata <- tbldfGrabber(data, lon)

loop over all of the spatial units (aka observations)
meatWeight <- lapply(1l:n, function(i) {
turn longitude & latitude into KMs. 1 deg lat = 111 km, 1 deg lon = 111 km* cos(lat)
lonscale <- cos(latdatal[i]l#*pi / 180) * 111
latscale <- 111

distance ——> use pythagorean theorem! who knew that was useful?
dist <- as.numeric(sqrt((latscale*(latdatal[i] - latdata))"2
+ (lonscale*(londata[i] - londata))“~2))

set a window var = 1 1ff observation j is within cutoff dist of obs 12
window <- as.numeric(dist <= cutoff)

this next part is where the magic happens. this thing makes:

sum_j(X_i1X_j'e_ie_j K(d_{%j})), and we make n of them - one for each <.

double transpose here ts because R 1s bad at dealing with 1 = something stuff.
we want z_1'; this is an easy way to get it. Now for some dimensions
(we want k © k at the end):

XeeXh <- ((t(t(xdatali, 1)) %x*% matrix(l, 1, n) * e[i,]) =*

ka1 1 xn 1z 1
(matrix(1l, k, 1) %% (t(e) * t(window)))) %x*% xdata
kx 1 1 xzn n Tk
return(XeeXh)

9

phew! Now let's make our sandwich. First, the meat = sum_t what we just made
meat <- (Reduce("+", meatWeight)) / n

and the usual bread

bread <- solve(t(xdata) %*% xdata)

mmmm, delicrous sandwich

sandwich <- n* (t(bread) %*% meat %xJ, bread)

se as per usual

se <- sqrt(diag(sandwich))

14

output <- list(betahat, se)
names (output) <- c("betahat", "conleySE")
return(output)

}

You're seeing the nice pretty version of this - but it’s still a little complicated, so let’s take a minute to breathe it
in.?2 Aaaahhh. You should notice that this thing looks a lot like the Newey-West estimator we wrote up above.
Really, the only differences are in the “weights.” First, Newey-West uses distances between observations in time
as its measure of distance; Conley uses distances between observations in space, which makes the “distance” thing
a little more complicated. Second, Newey-West weights decay away from observation ¢, and eventually become
zero. Conley weights (with a uniform kernel) are equal within some radius of observation i, and then immediately
become zero outside that radius.?® Unlike with Newey-West standard errors, there isn’t a rule of thumb yet (that
I know of) on the optimal distance cutoff - you’ll just have to play around with this a little bit.

Let’s go ahead and apply these new standard errors to our earthquake data. We’ll regress earthquake depth on
magnitude. Recall that our olsConley() function takes the regular OLS stuff, plus a latitude variable and a
longitude variable, and finally a cutoff as arguments?*:

quakeData <- as.tbl_df (quakes) %>%
mutate(ones = 1)

myConley <- olsConley(quakeData, "depth", c("ones", "mag"), "lat", "long", 100)

We can’t actually compare these to standard errors from a canned routine, because there isn’t one(!) But I can
promise you that these are correct, since I painstakingly checked them against Sol’s code. We can, however,
compare them to regular (canned) SEs:

cannedQuakes <- summary(felm(data = quakeData, depth ~ mag))$coefficients[,?2]

myConley

$betahat

depth
ones 881.6250
mag -123.4209

#Hit
$conleySE
#Hit ones mag

109.04809 19.27074

cannedQuakes

22Next time you see Matt Woerman, you should thank him profusely - he and I stared at the matrix multiplication going on here
for quite some time.

23You could change this and instead use a Bartlett kernel with Conley, which would give decaying weights inside our radius and zero
weight outside. Left as an exercise for the (intrepid) reader, but not actually that hard to do. Just modify the window term so that
it’s the current window term times a weight term that depends on distance.

24Be careful about how big you make your cutoffs. What do you expect to happen if you make your cutoff too big?

15

https://sites.google.com/site/mattwoerman/

(Intercept) mag
#i# 76.44439 16.48253

Again, larger. Are you sensing a theme? If anybody ever tells you they estimated standard errors under the
spherical assumption, you should be highly skeptical.?®

Charlie Foxtrot?

What we’ve all been waiting for! Clustered standard errors have become standard practice among applied microe-
conometricians.?6 The idea is pretty simple: suppose that every observation belongs to (only) one of G groups.
The assumption we make when we cluster is that there is no correlation across groups - but we will allow for
arbitrary within-group correlation. My favorite cross-sectional example to use to think about these groups is to
considers individuals within villages. In many cases, it’s pretty reasonable to think that individuals’ error terms
are correlated within a village, but that individuals’ errors aren’t correlated across villages.?” If you don’t like
development, imagine instead having multiple observations of an individual over time. In math, we can write down
the following DGP:

Yig = X/igﬁ + €ig
where ¢ = 1,..., N indexes individuals and g = 1,...,G indexes groups. We're still going to invoke our usual

assumption that E[eg|x;y] = 0, but now we’ll invoke our new assumption: Elejge’s ,|xig, Xjq] = 0 Vg # g'. If we
now stack all of the observations from the gth cluster, we can write our DGP as:

yg=XgB+ g

where y, and g, are Ny x 1, Xg is Ny x k, and there are IV, individuals in cluster g. Stack one more time, and
we get the DGP we’re used to:
y=XB+e

With this DGP in mind, we can write:
G e
P -1
B=XX)"Xy=|) XXg | > X,y
g=1 g=1

This assumption generates a block-diagonal ¥ matrix?:

Q 0 0
0 Q 0

¥ = _
0 0 Qg

2Pro tip, though: don’t be that guy (woman) in a seminar who asks about standard errors.

26This is thanks in large part to a seminal paper by Bertrand, Duflo, and Mullainathan in the QJE, which shows that we dramatically
over-reject the null hypothesis in difference-in-differences designs when we fail to account for error dependence. Matt Woerman, Louis
Preonas, and I are working on two papers (Open Science Framework page here), thanks to generous funding from BITSS, that also
address these issues - look out for them at the end of 2016.

2"Tt’s also potentially reasonable to think of situations in which this isn’t true - again, see Burlig, Preonas, Woerman (not yet existant)
for a discussion, but let’s go with it for now.

28Notice that we don’t need to make the assumption that each cluster is the same size - and our code will be flexible in this regard.

16

https://osf.io/cnpjk/
http://www.bitss.org

where

9.9 9.9 9.9
s}]e}] 8!1163 e—:glys]gv
€281 &35y €eN
Qg = . .
9.9 _9_9 9 9
We can express this in “meat” notation, too:
G
/ o / /
X3¥X = g Xg€geg Xg
g=1

As usual, we're looking for an estimator for the “meat”. Turns out that White came up with one in 1984 (and a
number of econometricians have since improved our understanding of it).2? We can express the ‘cluster-robust”
estimate of the “meat” as:

G
Iy / /
X'SX =) Xiege, X,
g=1
As with all of these sandwich estimators, clustered standard errors rely on asymptopia. General rules of thumb
are that you shouldn’t use this estimator with fewer than 40 clusters - but even more than that is better.?°

Why do people like clustered standard errors so much? In my mind, the feature that people like the most is
that they allow for arbitrary dependence between observations within a cluster - this is really non-parametric,
which is great. Also, we like to think about groups - it’s easy to cluster by, say, state, and we don’t have to be
as restrictive in choosing weights as we did with Conley and Newey-West. Another advantage is that clusters
play nicely with panel data: if you cluster at the individual level in a individual-by-date panel, you're allowing
for arbitrary dependence between any two observations in that individual’s time series, regardless of when they
appear.®! Even better, if you have data on individuals in multiple counties by date, you could cluster at the county
level and allow for arbitrary dependence between any two individual-dates within that county, which is very flexible.

What are the downsides of clustering? First, you need a lot of clusters for the estimate to be credible. Second,
when you cluster, you're still making a parametric assumption - you’re restricting the off-block-diagonal terms of
your X matrix to be zero, which is pretty strong. This is particularly concerning when you think, for example,
that people living close to state borders look more alike than people living far away from the borders. Clustering
at the state level will do a bad job of capturing this dependence.

At the end of the day, the right answer with standard errors is always to think carefully about what you think
the true DGP is, and then estimate a bunch of different types of standard errors that make sense. Of course, you
also always want to be conservative. So: clustered standard errors are often great, but they’re not the be-all and
end-all (just like, for example, RCTs are great but aren’t the right tool for every job).3? Okay. End rant.

Given all of our experience with Newey-West and Conley, which are actually much more complicated, coding the
clustered standard error estimator up should be a sinch.

30Tf you really have very few clusters, you can use Cameron, Gelbach, and Miller’s Wild Cluster Bootstrap to improve your standard
error estimates.

31This is nicer than Newey-West in instances where we think, for example, that my electricity consumption on Wednesdays is super
highly correlated, but less so than my Wednesday to Thursday consumption, which would receive higher weight in Newey-West than
Wednesday to Wednesday a week later.

32Hashtag antagonizingtherandomistas. Hashtag wannaberandomista.

17

olsCluster <- function(data, y, X, clustervar) {
usual setup
n <- nrow(data)
k <- length(X)
ydata <- tbldfGrabber(data, y)
xdata <- tbldfGrabber(data, X)
grab the cluster column too
clusterdata <- tbldfGrabber(data, clustervar)

grab each cluster tdentifier
clusters <- unique(clusterdata)
number of clusters
G <- length(clusters)

betahat <- solve(t(xdata) %*% xdata) %*) t(xdata) %I ydata
e <- ydata - xdata %*J, betahat

loop over all of the clusters
clusterMeat <- lapply(1:G, function(g) {
which obs belong to cluster g?¢
gindex <- which(clusterdata == clusters[g])
x data for cluster g only
Xg <- xdatalgindex,]
resids for cluster g only
eg <- matrix(e[gindex,])

calculate each cluster's meat
XeeXg <- t(Xg) %% eg ¥%*h t(eg) Y*lh Xg
#Dims: k x ng ng x 1 1 zng ngxk

return(XeeXg)

)

sandwich as per usual

meat <- (Reduce("+", clusterMeat)) / n

bread <- solve(t(xdata) %*% xdata)

apply a DoF correction

dfc <= (G/(G-1))*((n-1)/(n-k))

sandwich <- dfc * n * t(bread) %*}) meat %x*J bread

se as per usual

se <- sqrt(diag(sandwich))

output <- list(betahat, se)

names (output) <- c("betahat", "ClusteredSE")
return(output)

That wasn’t so bad. Let’s test it. We’ll use the NOxEmissions dataset from robustbase for this. This is a dataset

18

of hourly NO, readings, including NO, concentration, automobile emissions, and windspeed. We're going to use
the observation data as our cluster variable. This allows for arbitrary dependence between observations in the
same day, and zero correlation across days. Is this reasonable? Maybe. But we’ll go with it for now:

nox <- as.tbl_df (NOxEmissions) %>%
mutate(ones = 1)

myNoClusters <- felm(data = nox, LNOx ~ sqrtWs)

myClusters <- olsCluster(nox, "LNOx", c("ones", "sqrtWS"), "julday")
using more of the felm() syntax: the 0's say no FE, no IV

for mow. the last entry ts the cluster wvariable

cannedClusters <- felm(data = nox, LNOx ~ sqrtWS |0|0| julday)

regular SE
(summary (myNoClusters))$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.5588538 0.02911941 190.89856 0
sqrtWs -0.8644279 0.02018434 -42.82666 0

our clustered SE
myClusters

$betahat

#it LNOx
ones 5.5588538
sqrtWs -0.8644279

#it
$ClusteredSE
ones sqrtWs

0.06475863 0.04775083

canned clustered SE
(summary (cannedClusters))$coefficients[,2]

(Intercept) sqrtWs
0.06475863 0.04775083

Spot. On. I’'m as surprised as you are! As we’ve seen over and over again, the regular standard errors are smaller
than the clustered standard errors. Be aware, though, that this need not necessarily be the case - if you have
negative correlation between observations within a cluster, clustered standard errors will often be smaller than
regular standard errors, so don’t panic.

Bacon, lettuce, and tomato!

In case you weren’t already at the point where you never want to see a standard error ever again, I want to
bring your attention to two more things that you can do. We won’t code them up, nor will we spend a long time

19

discussing them, because they’re both panel data techniques, which is mostly beyond the scope of this class, but
you should know that they exist.

If you have panel data, and think that there might be both serial correlation and temporal correlation, you can use
extensions to the methods we’ve shown today. If you have a large panel, you could take (one of two) clustering
approaches: either cluster at a higher-level unit, thereby allowing for even arbitrary-ier arbitrary dependence, or
two-way cluster. This sounds daunting, but is essentially just calculating two sets of meat: a spatial meat (just like
we did above), and a temporal meat (use time periods instead of cluster identifiers and you’re right on track), and
then adding them up before you calculate your sandwich. Good news: felm() will do this for you - and in all likeli-
hood, by the time you’re doing this, you’ll be done with ARE 212 and no longer subject to the canned routine ban.

The alternative to clustering is to combine the Conley approach with the Newey-West approach to get standard
errors that are robust to both spatial correlation and temporal correlation. To do this, all you have to do is to
compute the “meat” part of the sandwich using the Conley formula within each time unit, and using the Newey-
West formula within each panel unit. Add all of these guys up to create the mega meat, and then do the usual
sandwich transformation to get the standard errors. felm() won’t do this for you (yet?), but this is what Sol’s
code does, and what Thiemo’s does as well, so you have it at your disposal should you be interested.

Next week, we’ll move out of standard error land (I know you're not not sad), and talk about instrumental
variables.

20

